Cargando…

Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective

Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical int...

Descripción completa

Detalles Bibliográficos
Autores principales: Ulian, Gianfranco, Moro, Daniele, Valdrè, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152500/
https://www.ncbi.nlm.nih.gov/pubmed/34068073
http://dx.doi.org/10.3390/biom11050728
_version_ 1783698620466331648
author Ulian, Gianfranco
Moro, Daniele
Valdrè, Giovanni
author_facet Ulian, Gianfranco
Moro, Daniele
Valdrè, Giovanni
author_sort Ulian, Gianfranco
collection PubMed
description Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical interplay between its components, collagen (main organic part) and hydroxylapatite-like mineral. The knowledge needed to fully understand the properties of bony and dental tissues and to develop specific applicative biomaterials (e.g., fillers, prosthetics, scaffolds, implants, etc.) resides mostly at the atomic scale. Among the different methods to obtains such detailed information, atomistic computer simulations (in silico) have proven to be both corroborative and predictive tools in this subject. The authors have intensively worked on quantum mechanical simulations of bioapatite and the present work reports a detailed review addressed to the crystal-chemical, physical, spectroscopic, mechanical, and surface properties of the mineral phase of bone and dental tissues. The reviewed studies were conducted at different length and time scales, trying to understand the features of hydroxylapatite and biological apatite models alone and/or in interaction with simplified collagen-like models. The reported review shows the capability of the computational approach in dealing with complex biological physicochemical systems, providing accurate results that increase the overall knowledge of hard tissue science.
format Online
Article
Text
id pubmed-8152500
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81525002021-05-27 Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective Ulian, Gianfranco Moro, Daniele Valdrè, Giovanni Biomolecules Review Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical interplay between its components, collagen (main organic part) and hydroxylapatite-like mineral. The knowledge needed to fully understand the properties of bony and dental tissues and to develop specific applicative biomaterials (e.g., fillers, prosthetics, scaffolds, implants, etc.) resides mostly at the atomic scale. Among the different methods to obtains such detailed information, atomistic computer simulations (in silico) have proven to be both corroborative and predictive tools in this subject. The authors have intensively worked on quantum mechanical simulations of bioapatite and the present work reports a detailed review addressed to the crystal-chemical, physical, spectroscopic, mechanical, and surface properties of the mineral phase of bone and dental tissues. The reviewed studies were conducted at different length and time scales, trying to understand the features of hydroxylapatite and biological apatite models alone and/or in interaction with simplified collagen-like models. The reported review shows the capability of the computational approach in dealing with complex biological physicochemical systems, providing accurate results that increase the overall knowledge of hard tissue science. MDPI 2021-05-13 /pmc/articles/PMC8152500/ /pubmed/34068073 http://dx.doi.org/10.3390/biom11050728 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Ulian, Gianfranco
Moro, Daniele
Valdrè, Giovanni
Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective
title Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective
title_full Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective
title_fullStr Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective
title_full_unstemmed Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective
title_short Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective
title_sort hydroxylapatite and related minerals in bone and dental tissues: structural, spectroscopic and mechanical properties from a computational perspective
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152500/
https://www.ncbi.nlm.nih.gov/pubmed/34068073
http://dx.doi.org/10.3390/biom11050728
work_keys_str_mv AT uliangianfranco hydroxylapatiteandrelatedmineralsinboneanddentaltissuesstructuralspectroscopicandmechanicalpropertiesfromacomputationalperspective
AT morodaniele hydroxylapatiteandrelatedmineralsinboneanddentaltissuesstructuralspectroscopicandmechanicalpropertiesfromacomputationalperspective
AT valdregiovanni hydroxylapatiteandrelatedmineralsinboneanddentaltissuesstructuralspectroscopicandmechanicalpropertiesfromacomputationalperspective