Cargando…

The Genotoxic and Pro-Apoptotic Activities of Advanced Glycation End-Products (MAGE) Measured with Micronuclei Assay Are Inhibited by Their Low Molecular Mass Counterparts

An association between the cancer invasive activities of cells and their exposure to advanced glycation end-products (AGEs) was described early in some reports. An incubation of cells with BSA–AGE (bovine serum albumin–AGE), BSA–carboxymethyllysine and BSA–methylglyoxal (BSA–MG) resulted in a signif...

Descripción completa

Detalles Bibliográficos
Autores principales: Czech, Monika, Konopacka, Maria, Rogoliński, Jacek, Maniakowski, Zbigniew, Staniszewska, Magdalena, Łaczmański, Łukasz, Witkowska, Danuta, Gamian, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152725/
https://www.ncbi.nlm.nih.gov/pubmed/34068126
http://dx.doi.org/10.3390/genes12050729
Descripción
Sumario:An association between the cancer invasive activities of cells and their exposure to advanced glycation end-products (AGEs) was described early in some reports. An incubation of cells with BSA–AGE (bovine serum albumin–AGE), BSA–carboxymethyllysine and BSA–methylglyoxal (BSA–MG) resulted in a significant increase in DNA damage. We examined the genotoxic activity of new products synthesized under nonaqueous conditions. These were high molecular mass MAGEs (HMW–MAGEs) formed from protein and melibiose and low molecular mass MAGEs (LMW–MAGEs) obtained from the melibiose and N-α-acetyllysine and N-α-acetylarginine. We have observed by measuring of micronuclei in human lymphocytes in vitro that the studied HMW–MAGEs expressed the genotoxicity. The number of micronuclei (MN) in lymphocytes reached 40.22 ± 5.34 promille (MN/1000CBL), compared to 28.80 ± 6.50 MN/1000 CBL for the reference BSA–MG, whereas a control value was 20.66 ± 1.39 MN/1000CBL. However, the LMW–MAGE fractions did not induce micronuclei formation in the culture of lymphocytes and partially protected DNA against damage in the cells irradiated with X-ray. Human melanoma and all other studied cells, such as bronchial epithelial cells, lung cancer cells and colorectal cancer cells, are susceptible to the genotoxic effects of HMW–MAGEs. The LMW–MAGEs are not genotoxic, while they inhibit HMW–MAGE genotoxic activity. With regard to apoptosis, it is induced with the HMW–MAGE compounds, in the p53 independent way, whereas the low molecular mass product inhibits the apoptosis induction. Further investigations will potentially indicate beneficial apoptotic effect on cancer cells.