Cargando…
Coastal Wetland Classification with GF-3 Polarimetric SAR Imagery by Using Object-Oriented Random Forest Algorithm
When the use of optical images is not practical due to cloud cover, Synthetic Aperture Radar (SAR) imagery is a preferred alternative for monitoring coastal wetlands because it is unaffected by weather conditions. Polarimetric SAR (PolSAR) enables the detection of different backscattering mechanisms...
Autores principales: | Zhang, Xiaotong, Xu, Jia, Chen, Yuanyuan, Xu, Kang, Wang, Dongmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152759/ https://www.ncbi.nlm.nih.gov/pubmed/34068106 http://dx.doi.org/10.3390/s21103395 |
Ejemplares similares
-
Assessment of GF3 Full-Polarimetric SAR Data for Dryland Crop Classification with Different Polarimetric Decomposition Methods
por: Wang, Meng, et al.
Publicado: (2022) -
Assessment of GF-3 Polarimetric SAR Data for Physical Scattering Mechanism Analysis and Terrain Classification
por: Yin, Junjun, et al.
Publicado: (2017) -
Land Cover Classification with GF-3 Polarimetric Synthetic Aperture Radar Data by Random Forest Classifier and Fast Super-Pixel Segmentation
por: Fang, Yuyuan, et al.
Publicado: (2018) -
Polarimetric Calibration and Quality Assessment of the GF-3 Satellite Images
por: Chang, Yonglei, et al.
Publicado: (2018) -
Speckle Filtering of GF-3 Polarimetric SAR Data with Joint Restriction Principle
por: Xie, Jinwei, et al.
Publicado: (2018)