Cargando…

Trends in trigonal prismatic Ln-[1]ferrocenophane complexes and discovery of a Ho(3+) single-molecule magnet

Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magn...

Descripción completa

Detalles Bibliográficos
Autores principales: Latendresse, Trevor P., Vieru, Veacheslav, Upadhyay, Apoorva, Bhuvanesh, Nattamai S., Chibotaru, Liviu F., Nippe, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152809/
https://www.ncbi.nlm.nih.gov/pubmed/34122864
http://dx.doi.org/10.1039/d0sc01197e
_version_ 1783698673694146560
author Latendresse, Trevor P.
Vieru, Veacheslav
Upadhyay, Apoorva
Bhuvanesh, Nattamai S.
Chibotaru, Liviu F.
Nippe, Michael
author_facet Latendresse, Trevor P.
Vieru, Veacheslav
Upadhyay, Apoorva
Bhuvanesh, Nattamai S.
Chibotaru, Liviu F.
Nippe, Michael
author_sort Latendresse, Trevor P.
collection PubMed
description Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magnetic properties of the ferrocenophanes, [LnFc(3)(THF)(2)Li(2)](−), of the late trivalent lanthanide ions (Ln = Gd (1), Ho (2), Er (3), Tm (4), Yb (5), Lu (6)). One major structural trend within this class of complexes is the increasing diferrocenyl (Fc(2−)) average twist angle with decreasing ionic radius (r(ion)) of the central Ln ion, resulting in the largest average Fc(2−) twist angles for the Lu(3+) compound 6. Such high sensitivity of the twist angle to changes in r(ion) is unique to the here presented ferrocenophane complexes and likely due to the large trigonal plane separation enforced by the ligand (>3.2 Å). This geometry also allows the non-Kramers ion Ho(3+) to exhibit slow magnetic relaxation in the absence of applied dc fields, rendering compound 2 a rare example of a Ho-based single-molecule magnet (SMM) with barriers to magnetization reversal (U) of 110–131 cm(−1). In contrast, compounds featuring Ln ions with prolate electron density (3–5) don't show slow magnetization dynamics under the same conditions. The observed trends in magnetic properties of 2–5 are supported by state-of-the-art ab initio calculations. Finally, the magneto-structural relationship of the trigonal prismatic Ho-[1]ferrocenophane motif was further investigated by axial ligand (THF in 2) exchange to yield [HoFc(3)(THF*)(2)Li(2)](−) (2-THF*) and [HoFc(3)(py)(2)Li(2)](−) (2-py) motifs. We find that larger average Fc(2−) twist angles (in 2-THF* and 2-py as compared to in 2) result in faster magnetic relaxation times at a given temperature.
format Online
Article
Text
id pubmed-8152809
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81528092021-06-11 Trends in trigonal prismatic Ln-[1]ferrocenophane complexes and discovery of a Ho(3+) single-molecule magnet Latendresse, Trevor P. Vieru, Veacheslav Upadhyay, Apoorva Bhuvanesh, Nattamai S. Chibotaru, Liviu F. Nippe, Michael Chem Sci Chemistry Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magnetic properties of the ferrocenophanes, [LnFc(3)(THF)(2)Li(2)](−), of the late trivalent lanthanide ions (Ln = Gd (1), Ho (2), Er (3), Tm (4), Yb (5), Lu (6)). One major structural trend within this class of complexes is the increasing diferrocenyl (Fc(2−)) average twist angle with decreasing ionic radius (r(ion)) of the central Ln ion, resulting in the largest average Fc(2−) twist angles for the Lu(3+) compound 6. Such high sensitivity of the twist angle to changes in r(ion) is unique to the here presented ferrocenophane complexes and likely due to the large trigonal plane separation enforced by the ligand (>3.2 Å). This geometry also allows the non-Kramers ion Ho(3+) to exhibit slow magnetic relaxation in the absence of applied dc fields, rendering compound 2 a rare example of a Ho-based single-molecule magnet (SMM) with barriers to magnetization reversal (U) of 110–131 cm(−1). In contrast, compounds featuring Ln ions with prolate electron density (3–5) don't show slow magnetization dynamics under the same conditions. The observed trends in magnetic properties of 2–5 are supported by state-of-the-art ab initio calculations. Finally, the magneto-structural relationship of the trigonal prismatic Ho-[1]ferrocenophane motif was further investigated by axial ligand (THF in 2) exchange to yield [HoFc(3)(THF*)(2)Li(2)](−) (2-THF*) and [HoFc(3)(py)(2)Li(2)](−) (2-py) motifs. We find that larger average Fc(2−) twist angles (in 2-THF* and 2-py as compared to in 2) result in faster magnetic relaxation times at a given temperature. The Royal Society of Chemistry 2020-03-24 /pmc/articles/PMC8152809/ /pubmed/34122864 http://dx.doi.org/10.1039/d0sc01197e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Latendresse, Trevor P.
Vieru, Veacheslav
Upadhyay, Apoorva
Bhuvanesh, Nattamai S.
Chibotaru, Liviu F.
Nippe, Michael
Trends in trigonal prismatic Ln-[1]ferrocenophane complexes and discovery of a Ho(3+) single-molecule magnet
title Trends in trigonal prismatic Ln-[1]ferrocenophane complexes and discovery of a Ho(3+) single-molecule magnet
title_full Trends in trigonal prismatic Ln-[1]ferrocenophane complexes and discovery of a Ho(3+) single-molecule magnet
title_fullStr Trends in trigonal prismatic Ln-[1]ferrocenophane complexes and discovery of a Ho(3+) single-molecule magnet
title_full_unstemmed Trends in trigonal prismatic Ln-[1]ferrocenophane complexes and discovery of a Ho(3+) single-molecule magnet
title_short Trends in trigonal prismatic Ln-[1]ferrocenophane complexes and discovery of a Ho(3+) single-molecule magnet
title_sort trends in trigonal prismatic ln-[1]ferrocenophane complexes and discovery of a ho(3+) single-molecule magnet
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152809/
https://www.ncbi.nlm.nih.gov/pubmed/34122864
http://dx.doi.org/10.1039/d0sc01197e
work_keys_str_mv AT latendressetrevorp trendsintrigonalprismaticln1ferrocenophanecomplexesanddiscoveryofaho3singlemoleculemagnet
AT vieruveacheslav trendsintrigonalprismaticln1ferrocenophanecomplexesanddiscoveryofaho3singlemoleculemagnet
AT upadhyayapoorva trendsintrigonalprismaticln1ferrocenophanecomplexesanddiscoveryofaho3singlemoleculemagnet
AT bhuvaneshnattamais trendsintrigonalprismaticln1ferrocenophanecomplexesanddiscoveryofaho3singlemoleculemagnet
AT chibotaruliviuf trendsintrigonalprismaticln1ferrocenophanecomplexesanddiscoveryofaho3singlemoleculemagnet
AT nippemichael trendsintrigonalprismaticln1ferrocenophanecomplexesanddiscoveryofaho3singlemoleculemagnet