Cargando…
UV-Induced Neuronal Degeneration in the Rat Cerebral Cortex
Irradiation with ultraviolet (UV) light on the cortical surface can induce a focal brain lesion (UV lesion) in rodents. In the present study, we investigated the process of establishing a UV lesion. Rats underwent UV irradiation (365-nm wavelength, 2.0 mWh) over the dura, and time-dependent changes...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152860/ https://www.ncbi.nlm.nih.gov/pubmed/34296154 http://dx.doi.org/10.1093/texcom/tgab006 |
Sumario: | Irradiation with ultraviolet (UV) light on the cortical surface can induce a focal brain lesion (UV lesion) in rodents. In the present study, we investigated the process of establishing a UV lesion. Rats underwent UV irradiation (365-nm wavelength, 2.0 mWh) over the dura, and time-dependent changes in the cortical tissue were analyzed histologically. We found that the majority of neurons in the lesion started to degenerate within 24 h and the rest disappeared within 5 days after irradiation. UV-induced neuronal degeneration progressed in a layer-dependent manner. Moreover, UV-induced terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity and heme oxygenase-1 (HO-1) immunoreactivity were also detected. These findings suggest that UV irradiation in the brain can induce gradual neural degeneration and oxidative stress. Importantly, UV vulnerability may vary among cortical layers. UV-induced cell death may be due to apoptosis; however, there remains a possibility that UV-irradiated cells were degenerated via processes other than apoptosis. The UV lesion technique will not only assist in investigating brain function at a targeted site but may also serve as a pathophysiological model of focal brain injury and/or neurodegenerative disorders. |
---|