Cargando…
Information Structures for Causally Explainable Decisions
For an AI agent to make trustworthy decision recommendations under uncertainty on behalf of human principals, it should be able to explain why its recommended decisions make preferred outcomes more likely and what risks they entail. Such rationales use causal models to link potential courses of acti...
Autor principal: | Cox, Louis Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153020/ https://www.ncbi.nlm.nih.gov/pubmed/34068183 http://dx.doi.org/10.3390/e23050601 |
Ejemplares similares
-
How causal information affects decisions
por: Zheng, Min, et al.
Publicado: (2020) -
On Explaining Quantum Correlations: Causal vs. Non-Causal
por: Felline, Laura
Publicado: (2021) -
Toward practical causal epidemiology
por: Cox, Louis Anthony
Publicado: (2021) -
Causal reasoning about epidemiological associations in conversational AI
por: Cox, Louis Anthony
Publicado: (2023) -
Network Structure Explains the Impact of Attitudes on Voting Decisions
por: Dalege, Jonas, et al.
Publicado: (2017)