Cargando…
Individual Cortical Entropy Profile: Test–Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation
The entropy profiles of cortical activity have become novel perspectives to investigate individual differences in behavior. However, previous studies have neglected foundational aspects of individual entropy profiles, that is, the test–retest reliability, the predictive power for cognitive ability i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153045/ https://www.ncbi.nlm.nih.gov/pubmed/34296093 http://dx.doi.org/10.1093/texcom/tgaa015 |
_version_ | 1783698716691005440 |
---|---|
author | Liu, Mianxin Liu, Xinyang Hildebrandt, Andrea Zhou, Changsong |
author_facet | Liu, Mianxin Liu, Xinyang Hildebrandt, Andrea Zhou, Changsong |
author_sort | Liu, Mianxin |
collection | PubMed |
description | The entropy profiles of cortical activity have become novel perspectives to investigate individual differences in behavior. However, previous studies have neglected foundational aspects of individual entropy profiles, that is, the test–retest reliability, the predictive power for cognitive ability in out-of-sample data, and the underlying neuroanatomical basis. We explored these issues in a large young healthy adult dataset (Human Connectome Project, N = 998). We showed the whole cortical entropy profile from resting-state functional magnetic resonance imaging is a robust personalized measure, while subsystem profiles exhibited heterogeneous reliabilities. The limbic network exhibited lowest reliability. We tested the out-of-sample predictive power for general and specific cognitive abilities based on reliable cortical entropy profiles. The default mode and visual networks are most crucial when predicting general cognitive ability. We investigated the anatomical features underlying cross-region and cross-individual variations in cortical entropy profiles. Cortical thickness and structural connectivity explained spatial variations in the group-averaged entropy profile. Cortical folding and myelination in the attention and frontoparietal networks determined predominantly individual cortical entropy profile. This study lays foundations for brain-entropy-based studies on individual differences to understand cognitive ability and related pathologies. These findings broaden our understanding of the associations between neural structures, functional dynamics, and cognitive ability. |
format | Online Article Text |
id | pubmed-8153045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-81530452021-07-21 Individual Cortical Entropy Profile: Test–Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation Liu, Mianxin Liu, Xinyang Hildebrandt, Andrea Zhou, Changsong Cereb Cortex Commun Original Article The entropy profiles of cortical activity have become novel perspectives to investigate individual differences in behavior. However, previous studies have neglected foundational aspects of individual entropy profiles, that is, the test–retest reliability, the predictive power for cognitive ability in out-of-sample data, and the underlying neuroanatomical basis. We explored these issues in a large young healthy adult dataset (Human Connectome Project, N = 998). We showed the whole cortical entropy profile from resting-state functional magnetic resonance imaging is a robust personalized measure, while subsystem profiles exhibited heterogeneous reliabilities. The limbic network exhibited lowest reliability. We tested the out-of-sample predictive power for general and specific cognitive abilities based on reliable cortical entropy profiles. The default mode and visual networks are most crucial when predicting general cognitive ability. We investigated the anatomical features underlying cross-region and cross-individual variations in cortical entropy profiles. Cortical thickness and structural connectivity explained spatial variations in the group-averaged entropy profile. Cortical folding and myelination in the attention and frontoparietal networks determined predominantly individual cortical entropy profile. This study lays foundations for brain-entropy-based studies on individual differences to understand cognitive ability and related pathologies. These findings broaden our understanding of the associations between neural structures, functional dynamics, and cognitive ability. Oxford University Press 2020-05-07 /pmc/articles/PMC8153045/ /pubmed/34296093 http://dx.doi.org/10.1093/texcom/tgaa015 Text en © The Author(s) 2020. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Liu, Mianxin Liu, Xinyang Hildebrandt, Andrea Zhou, Changsong Individual Cortical Entropy Profile: Test–Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation |
title | Individual Cortical Entropy Profile: Test–Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation |
title_full | Individual Cortical Entropy Profile: Test–Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation |
title_fullStr | Individual Cortical Entropy Profile: Test–Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation |
title_full_unstemmed | Individual Cortical Entropy Profile: Test–Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation |
title_short | Individual Cortical Entropy Profile: Test–Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation |
title_sort | individual cortical entropy profile: test–retest reliability, predictive power for cognitive ability, and neuroanatomical foundation |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153045/ https://www.ncbi.nlm.nih.gov/pubmed/34296093 http://dx.doi.org/10.1093/texcom/tgaa015 |
work_keys_str_mv | AT liumianxin individualcorticalentropyprofiletestretestreliabilitypredictivepowerforcognitiveabilityandneuroanatomicalfoundation AT liuxinyang individualcorticalentropyprofiletestretestreliabilitypredictivepowerforcognitiveabilityandneuroanatomicalfoundation AT hildebrandtandrea individualcorticalentropyprofiletestretestreliabilitypredictivepowerforcognitiveabilityandneuroanatomicalfoundation AT zhouchangsong individualcorticalentropyprofiletestretestreliabilitypredictivepowerforcognitiveabilityandneuroanatomicalfoundation |