Cargando…
Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts
Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining...
Autores principales: | Gallarati, Simone, Fabregat, Raimon, Laplaza, Rubén, Bhattacharjee, Sinjini, Wodrich, Matthew D., Corminboeuf, Clemence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153079/ https://www.ncbi.nlm.nih.gov/pubmed/34123316 http://dx.doi.org/10.1039/d1sc00482d |
Ejemplares similares
-
OSCAR: an extensive repository of chemically and functionally diverse organocatalysts
por: Gallarati, Simone, et al.
Publicado: (2022) -
How Robust Is the Reversible
Steric Shielding Strategy
for Photoswitchable Organocatalysts?
por: Gallarati, Simone, et al.
Publicado: (2022) -
The (not so) simple prediction of enantioselectivity – a pipeline for high-fidelity computations
por: Laplaza, Rubén, et al.
Publicado: (2022) -
Mapping Catalyst–Solvent Interplay in Competing Carboamination/Cyclopropanation Reactions
por: Wodrich, Matthew D., et al.
Publicado: (2022) -
Linear scaling relationships and volcano plots in homogeneous catalysis – revisiting the Suzuki reaction
por: Busch, Michael, et al.
Publicado: (2015)