Cargando…
FTRLIM: Distributed Instance Matching Framework for Large-Scale Knowledge Graph Fusion
Instance matching is a key task in knowledge graph fusion, and it is critical to improving the efficiency of instance matching, given the increasing scale of knowledge graphs. Blocking algorithms selecting candidate instance pairs for comparison is one of the effective methods to achieve the goal. I...
Autores principales: | Zhu, Hongming, Wang, Xiaowen, Jiang, Yizhi, Fan, Hongfei, Du, Bowen, Liu, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153108/ https://www.ncbi.nlm.nih.gov/pubmed/34068208 http://dx.doi.org/10.3390/e23050602 |
Ejemplares similares
-
Distributed large-scale graph processing on FPGAs
por: Sahebi, Amin, et al.
Publicado: (2023) -
Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs
por: Oh, Sang-Il, et al.
Publicado: (2017) -
Knowledge-Fusion-Based Iterative Graph Structure Learning Framework for Implicit Sentiment Identification
por: Zhao, Yuxia, et al.
Publicado: (2023) -
A type-augmented knowledge graph embedding framework for knowledge graph completion
por: He, Peng, et al.
Publicado: (2023) -
Experimental Matching of Instances to Heuristics for Constraint Satisfaction Problems
por: Moreno-Scott, Jorge Humberto, et al.
Publicado: (2016)