Cargando…
Identifiability issues in estimating the impact of interventions on Covid-19 spread
The Covid-19 pandemic has spawned numerous dynamic modeling attempts aimed at estimation, prediction, and ultimately control. The predictive power of these attempts has varied, and there remains a lack of consensus regarding the mechanisms of virus spread and the effectiveness of various non-pharmac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153199/ http://dx.doi.org/10.1016/j.ifacol.2021.04.179 |
Sumario: | The Covid-19 pandemic has spawned numerous dynamic modeling attempts aimed at estimation, prediction, and ultimately control. The predictive power of these attempts has varied, and there remains a lack of consensus regarding the mechanisms of virus spread and the effectiveness of various non-pharmaceutical interventions that have been enforced regionally as well as nationally. Setting out in data available in the spring of 2020, and with a now-famous model by Imperial College researchers as example, we employ an information-theoretical approach to shed light on why the predictive power of early modeling approaches have remained disappointingly poor. |
---|