Cargando…
Biases and Variability from Costly Bayesian Inference
When humans infer underlying probabilities from stochastic observations, they exhibit biases and variability that cannot be explained on the basis of sound, Bayesian manipulations of probability. This is especially salient when beliefs are updated as a function of sequential observations. We introdu...
Autores principales: | Prat-Carrabin, Arthur, Meyniel, Florent, Tsodyks, Misha, Azeredo da Silveira, Rava |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153311/ https://www.ncbi.nlm.nih.gov/pubmed/34068364 http://dx.doi.org/10.3390/e23050603 |
Ejemplares similares
-
Interpretation of correlated neural variability from models of feed-forward and recurrent circuits
por: Pernice, Volker, et al.
Publicado: (2018) -
Human Inferences about Sequences: A Minimal Transition Probability Model
por: Meyniel, Florent, et al.
Publicado: (2016) -
High-Fidelity Coding with Correlated Neurons
por: da Silveira, Rava Azeredo, et al.
Publicado: (2014) -
Bayesian Inference Underlies the Contraction Bias in Delayed Comparison Tasks
por: Ashourian, Paymon, et al.
Publicado: (2011) -
A Biased Bayesian Inference for Decision-Making and Cognitive Control
por: Matsumori, Kaosu, et al.
Publicado: (2018)