Cargando…
Energy Absorption Capacity of SBR Latex-Modified Ordinary Portland Cement by Charpy Impact Test
The present study deals with tests on the energy absorption capacity and compressive strength of styrene–butadiene rubber (SBR) latex-modified cementitious materials. Different polymer–cement ratios (P/C) of 0, 5, 10, 15, and 20% were carried out with the Charpy impact test at 7, 14, and 28 days of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153565/ https://www.ncbi.nlm.nih.gov/pubmed/34068428 http://dx.doi.org/10.3390/ma14102544 |
Sumario: | The present study deals with tests on the energy absorption capacity and compressive strength of styrene–butadiene rubber (SBR) latex-modified cementitious materials. Different polymer–cement ratios (P/C) of 0, 5, 10, 15, and 20% were carried out with the Charpy impact test at 7, 14, and 28 days of curing. The observations showed an increase in the energy absorption capacity of the SBR latex-modified cement paste in correspondence with the increase in curing times, as well as the increase in the P/C ratios. The P/C ratio of 10% was the optimal ratio for observing the highest energy absorption capacity of the SBR latex-modified cement paste, with a 43% increase observed. In addition, a linear relationship between compressive strength and the energy absorption capacity at 28 days was proposed. Based on that, the energy absorption capacity of SBR latex-modified cement paste can be analyzed or predicted by the compressive strength results, regardless of the P/C ratios. Finally, the two-parameter Weibull distribution was proved to fit by the observation data from the Charpy impact test. |
---|