Cargando…
Hybrid Imitation Learning Framework for Robotic Manipulation Tasks
This study proposes a novel hybrid imitation learning (HIL) framework in which behavior cloning (BC) and state cloning (SC) methods are combined in a mutually complementary manner to enhance the efficiency of robotic manipulation task learning. The proposed HIL framework efficiently combines BC and...
Autores principales: | Jung, Eunjin, Kim, Incheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153608/ https://www.ncbi.nlm.nih.gov/pubmed/34068422 http://dx.doi.org/10.3390/s21103409 |
Ejemplares similares
-
An Adaptive Imitation Learning Framework for Robotic Complex Contact-Rich Insertion Tasks
por: Wang, Yan, et al.
Publicado: (2022) -
Repetition-Based Approach for Task Adaptation in Imitation Learning
por: Nguyen Duc, Tho, et al.
Publicado: (2022) -
Deep imitation learning for 3D navigation tasks
por: Hussein, Ahmed, et al.
Publicado: (2017) -
Modeling Task Uncertainty for Safe Meta-Imitation Learning
por: Matsushima, Tatsuya, et al.
Publicado: (2020) -
Imitating by Generating: Deep Generative Models for Imitation of Interactive Tasks
por: Bütepage, Judith, et al.
Publicado: (2020)