Cargando…

Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing

A new powder production method has been developed to speed up the search for novel alloys for additive manufacturing. The technique involves an ultrasonically agitated cold crucible installed at the top of a 20 kHz ultrasonic sonotrode. The material is melted with an electric arc and undergoes pulve...

Descripción completa

Detalles Bibliográficos
Autores principales: Żrodowski, Łukasz, Wróblewski, Rafał, Choma, Tomasz, Morończyk, Bartosz, Ostrysz, Mateusz, Leonowicz, Marcin, Łacisz, Wojciech, Błyskun, Piotr, Wróbel, Jan S., Cieślak, Grzegorz, Wysocki, Bartłomiej, Żrodowski, Cezary, Pomian, Karolina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153640/
https://www.ncbi.nlm.nih.gov/pubmed/34068424
http://dx.doi.org/10.3390/ma14102541
_version_ 1783698845214965760
author Żrodowski, Łukasz
Wróblewski, Rafał
Choma, Tomasz
Morończyk, Bartosz
Ostrysz, Mateusz
Leonowicz, Marcin
Łacisz, Wojciech
Błyskun, Piotr
Wróbel, Jan S.
Cieślak, Grzegorz
Wysocki, Bartłomiej
Żrodowski, Cezary
Pomian, Karolina
author_facet Żrodowski, Łukasz
Wróblewski, Rafał
Choma, Tomasz
Morończyk, Bartosz
Ostrysz, Mateusz
Leonowicz, Marcin
Łacisz, Wojciech
Błyskun, Piotr
Wróbel, Jan S.
Cieślak, Grzegorz
Wysocki, Bartłomiej
Żrodowski, Cezary
Pomian, Karolina
author_sort Żrodowski, Łukasz
collection PubMed
description A new powder production method has been developed to speed up the search for novel alloys for additive manufacturing. The technique involves an ultrasonically agitated cold crucible installed at the top of a 20 kHz ultrasonic sonotrode. The material is melted with an electric arc and undergoes pulverization with standing wave vibrations. Several different alloys in various forms, including noble and metallic glass alloys, were chosen to test the process. The atomized particles showed exceptional sphericity, while powder output suitable for additive manufacturing reached up to 60%. The AMZ4 metallic glass powder remained amorphous below the 50 μm fraction, while tungsten addition led to crystallization in each fraction. Minor contamination and high Mn and Zn evaporation, especially in the finest particles, was observed in atomized powders. The innovative ultrasonic atomization method appears as a promising tool for material scientists to develop powders with tailored chemical composition, size and structure.
format Online
Article
Text
id pubmed-8153640
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81536402021-05-27 Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing Żrodowski, Łukasz Wróblewski, Rafał Choma, Tomasz Morończyk, Bartosz Ostrysz, Mateusz Leonowicz, Marcin Łacisz, Wojciech Błyskun, Piotr Wróbel, Jan S. Cieślak, Grzegorz Wysocki, Bartłomiej Żrodowski, Cezary Pomian, Karolina Materials (Basel) Article A new powder production method has been developed to speed up the search for novel alloys for additive manufacturing. The technique involves an ultrasonically agitated cold crucible installed at the top of a 20 kHz ultrasonic sonotrode. The material is melted with an electric arc and undergoes pulverization with standing wave vibrations. Several different alloys in various forms, including noble and metallic glass alloys, were chosen to test the process. The atomized particles showed exceptional sphericity, while powder output suitable for additive manufacturing reached up to 60%. The AMZ4 metallic glass powder remained amorphous below the 50 μm fraction, while tungsten addition led to crystallization in each fraction. Minor contamination and high Mn and Zn evaporation, especially in the finest particles, was observed in atomized powders. The innovative ultrasonic atomization method appears as a promising tool for material scientists to develop powders with tailored chemical composition, size and structure. MDPI 2021-05-13 /pmc/articles/PMC8153640/ /pubmed/34068424 http://dx.doi.org/10.3390/ma14102541 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Żrodowski, Łukasz
Wróblewski, Rafał
Choma, Tomasz
Morończyk, Bartosz
Ostrysz, Mateusz
Leonowicz, Marcin
Łacisz, Wojciech
Błyskun, Piotr
Wróbel, Jan S.
Cieślak, Grzegorz
Wysocki, Bartłomiej
Żrodowski, Cezary
Pomian, Karolina
Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing
title Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing
title_full Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing
title_fullStr Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing
title_full_unstemmed Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing
title_short Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing
title_sort novel cold crucible ultrasonic atomization powder production method for 3d printing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153640/
https://www.ncbi.nlm.nih.gov/pubmed/34068424
http://dx.doi.org/10.3390/ma14102541
work_keys_str_mv AT zrodowskiłukasz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT wroblewskirafał novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT chomatomasz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT moronczykbartosz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT ostryszmateusz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT leonowiczmarcin novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT łaciszwojciech novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT błyskunpiotr novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT wrobeljans novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT cieslakgrzegorz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT wysockibartłomiej novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT zrodowskicezary novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting
AT pomiankarolina novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting