Cargando…
Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing
A new powder production method has been developed to speed up the search for novel alloys for additive manufacturing. The technique involves an ultrasonically agitated cold crucible installed at the top of a 20 kHz ultrasonic sonotrode. The material is melted with an electric arc and undergoes pulve...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153640/ https://www.ncbi.nlm.nih.gov/pubmed/34068424 http://dx.doi.org/10.3390/ma14102541 |
_version_ | 1783698845214965760 |
---|---|
author | Żrodowski, Łukasz Wróblewski, Rafał Choma, Tomasz Morończyk, Bartosz Ostrysz, Mateusz Leonowicz, Marcin Łacisz, Wojciech Błyskun, Piotr Wróbel, Jan S. Cieślak, Grzegorz Wysocki, Bartłomiej Żrodowski, Cezary Pomian, Karolina |
author_facet | Żrodowski, Łukasz Wróblewski, Rafał Choma, Tomasz Morończyk, Bartosz Ostrysz, Mateusz Leonowicz, Marcin Łacisz, Wojciech Błyskun, Piotr Wróbel, Jan S. Cieślak, Grzegorz Wysocki, Bartłomiej Żrodowski, Cezary Pomian, Karolina |
author_sort | Żrodowski, Łukasz |
collection | PubMed |
description | A new powder production method has been developed to speed up the search for novel alloys for additive manufacturing. The technique involves an ultrasonically agitated cold crucible installed at the top of a 20 kHz ultrasonic sonotrode. The material is melted with an electric arc and undergoes pulverization with standing wave vibrations. Several different alloys in various forms, including noble and metallic glass alloys, were chosen to test the process. The atomized particles showed exceptional sphericity, while powder output suitable for additive manufacturing reached up to 60%. The AMZ4 metallic glass powder remained amorphous below the 50 μm fraction, while tungsten addition led to crystallization in each fraction. Minor contamination and high Mn and Zn evaporation, especially in the finest particles, was observed in atomized powders. The innovative ultrasonic atomization method appears as a promising tool for material scientists to develop powders with tailored chemical composition, size and structure. |
format | Online Article Text |
id | pubmed-8153640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81536402021-05-27 Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing Żrodowski, Łukasz Wróblewski, Rafał Choma, Tomasz Morończyk, Bartosz Ostrysz, Mateusz Leonowicz, Marcin Łacisz, Wojciech Błyskun, Piotr Wróbel, Jan S. Cieślak, Grzegorz Wysocki, Bartłomiej Żrodowski, Cezary Pomian, Karolina Materials (Basel) Article A new powder production method has been developed to speed up the search for novel alloys for additive manufacturing. The technique involves an ultrasonically agitated cold crucible installed at the top of a 20 kHz ultrasonic sonotrode. The material is melted with an electric arc and undergoes pulverization with standing wave vibrations. Several different alloys in various forms, including noble and metallic glass alloys, were chosen to test the process. The atomized particles showed exceptional sphericity, while powder output suitable for additive manufacturing reached up to 60%. The AMZ4 metallic glass powder remained amorphous below the 50 μm fraction, while tungsten addition led to crystallization in each fraction. Minor contamination and high Mn and Zn evaporation, especially in the finest particles, was observed in atomized powders. The innovative ultrasonic atomization method appears as a promising tool for material scientists to develop powders with tailored chemical composition, size and structure. MDPI 2021-05-13 /pmc/articles/PMC8153640/ /pubmed/34068424 http://dx.doi.org/10.3390/ma14102541 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Żrodowski, Łukasz Wróblewski, Rafał Choma, Tomasz Morończyk, Bartosz Ostrysz, Mateusz Leonowicz, Marcin Łacisz, Wojciech Błyskun, Piotr Wróbel, Jan S. Cieślak, Grzegorz Wysocki, Bartłomiej Żrodowski, Cezary Pomian, Karolina Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing |
title | Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing |
title_full | Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing |
title_fullStr | Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing |
title_full_unstemmed | Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing |
title_short | Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing |
title_sort | novel cold crucible ultrasonic atomization powder production method for 3d printing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153640/ https://www.ncbi.nlm.nih.gov/pubmed/34068424 http://dx.doi.org/10.3390/ma14102541 |
work_keys_str_mv | AT zrodowskiłukasz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT wroblewskirafał novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT chomatomasz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT moronczykbartosz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT ostryszmateusz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT leonowiczmarcin novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT łaciszwojciech novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT błyskunpiotr novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT wrobeljans novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT cieslakgrzegorz novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT wysockibartłomiej novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT zrodowskicezary novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting AT pomiankarolina novelcoldcrucibleultrasonicatomizationpowderproductionmethodfor3dprinting |