Cargando…
Aquaculture mediates global transmission of a viral pathogen to wild salmon
Global expansion of aquaculture and agriculture facilitates disease emergence and catalyzes transmission to sympatric wildlife populations. The health of wild salmon stocks critically concerns Indigenous peoples, commercial and recreational fishers, and the general public. Despite potential impact o...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153721/ https://www.ncbi.nlm.nih.gov/pubmed/34039598 http://dx.doi.org/10.1126/sciadv.abe2592 |
Sumario: | Global expansion of aquaculture and agriculture facilitates disease emergence and catalyzes transmission to sympatric wildlife populations. The health of wild salmon stocks critically concerns Indigenous peoples, commercial and recreational fishers, and the general public. Despite potential impact of viral pathogens such as Piscine orthoreovirus-1 (PRV-1) on endangered wild salmon populations, their epidemiology in wild fish populations remains obscure, as does the role of aquaculture in global and local spread. Our phylogeographic analyses of PRV-1 suggest that development of Atlantic salmon aquaculture facilitated spread from Europe to the North and South East Pacific. Phylogenetic analysis and reverse transcription polymerase chain reaction surveillance further illuminate the circumstances of emergence of PRV-1 in the North East Pacific and provide strong evidence for Atlantic salmon aquaculture as a source of infection in wild Pacific salmon. PRV-1 is now an important infectious agent in critically endangered wild Pacific salmon populations, fueled by aquacultural transmission. |
---|