Cargando…

Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments

Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of f...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomaa, Fatma, Utter, Daniel R., Powers, Christopher, Beaudoin, David J., Edgcomb, Virginia P., Filipsson, Helena L., Hansel, Colleen M., Wankel, Scott D., Zhang, Ying, Bernhard, Joan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153729/
https://www.ncbi.nlm.nih.gov/pubmed/34039603
http://dx.doi.org/10.1126/sciadv.abf1586
_version_ 1783698863666757632
author Gomaa, Fatma
Utter, Daniel R.
Powers, Christopher
Beaudoin, David J.
Edgcomb, Virginia P.
Filipsson, Helena L.
Hansel, Colleen M.
Wankel, Scott D.
Zhang, Ying
Bernhard, Joan M.
author_facet Gomaa, Fatma
Utter, Daniel R.
Powers, Christopher
Beaudoin, David J.
Edgcomb, Virginia P.
Filipsson, Helena L.
Hansel, Colleen M.
Wankel, Scott D.
Zhang, Ying
Bernhard, Joan M.
author_sort Gomaa, Fatma
collection PubMed
description Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.
format Online
Article
Text
id pubmed-8153729
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-81537292021-06-07 Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments Gomaa, Fatma Utter, Daniel R. Powers, Christopher Beaudoin, David J. Edgcomb, Virginia P. Filipsson, Helena L. Hansel, Colleen M. Wankel, Scott D. Zhang, Ying Bernhard, Joan M. Sci Adv Research Articles Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation. American Association for the Advancement of Science 2021-05-26 /pmc/articles/PMC8153729/ /pubmed/34039603 http://dx.doi.org/10.1126/sciadv.abf1586 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Gomaa, Fatma
Utter, Daniel R.
Powers, Christopher
Beaudoin, David J.
Edgcomb, Virginia P.
Filipsson, Helena L.
Hansel, Colleen M.
Wankel, Scott D.
Zhang, Ying
Bernhard, Joan M.
Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
title Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
title_full Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
title_fullStr Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
title_full_unstemmed Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
title_short Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
title_sort multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153729/
https://www.ncbi.nlm.nih.gov/pubmed/34039603
http://dx.doi.org/10.1126/sciadv.abf1586
work_keys_str_mv AT gomaafatma multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT utterdanielr multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT powerschristopher multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT beaudoindavidj multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT edgcombvirginiap multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT filipssonhelenal multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT hanselcolleenm multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT wankelscottd multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT zhangying multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments
AT bernhardjoanm multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments