Cargando…
Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments
Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of f...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153729/ https://www.ncbi.nlm.nih.gov/pubmed/34039603 http://dx.doi.org/10.1126/sciadv.abf1586 |
_version_ | 1783698863666757632 |
---|---|
author | Gomaa, Fatma Utter, Daniel R. Powers, Christopher Beaudoin, David J. Edgcomb, Virginia P. Filipsson, Helena L. Hansel, Colleen M. Wankel, Scott D. Zhang, Ying Bernhard, Joan M. |
author_facet | Gomaa, Fatma Utter, Daniel R. Powers, Christopher Beaudoin, David J. Edgcomb, Virginia P. Filipsson, Helena L. Hansel, Colleen M. Wankel, Scott D. Zhang, Ying Bernhard, Joan M. |
author_sort | Gomaa, Fatma |
collection | PubMed |
description | Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation. |
format | Online Article Text |
id | pubmed-8153729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-81537292021-06-07 Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments Gomaa, Fatma Utter, Daniel R. Powers, Christopher Beaudoin, David J. Edgcomb, Virginia P. Filipsson, Helena L. Hansel, Colleen M. Wankel, Scott D. Zhang, Ying Bernhard, Joan M. Sci Adv Research Articles Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation. American Association for the Advancement of Science 2021-05-26 /pmc/articles/PMC8153729/ /pubmed/34039603 http://dx.doi.org/10.1126/sciadv.abf1586 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Gomaa, Fatma Utter, Daniel R. Powers, Christopher Beaudoin, David J. Edgcomb, Virginia P. Filipsson, Helena L. Hansel, Colleen M. Wankel, Scott D. Zhang, Ying Bernhard, Joan M. Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments |
title | Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments |
title_full | Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments |
title_fullStr | Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments |
title_full_unstemmed | Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments |
title_short | Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments |
title_sort | multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153729/ https://www.ncbi.nlm.nih.gov/pubmed/34039603 http://dx.doi.org/10.1126/sciadv.abf1586 |
work_keys_str_mv | AT gomaafatma multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT utterdanielr multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT powerschristopher multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT beaudoindavidj multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT edgcombvirginiap multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT filipssonhelenal multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT hanselcolleenm multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT wankelscottd multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT zhangying multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments AT bernhardjoanm multipleintegratedmetabolicstrategiesallowforaminiferanprotiststothriveinanoxicmarinesediments |