Cargando…
Investigations on Crystalline Perfection, Raman Spectra and Optical Characteristics of Transition Metal (Ru) Co-Doped Mg:LiNbO(3) Single Crystals
[Image: see text] Congruent lithium niobate single crystals with a Ru:Mg co-dopant have been successfully grown using the Czochralski technique from the melt containing 0.02 mol % Ru with Mg of two varied concentrations (4.0 and 6.0 mol %). The effects of Ru and Mg co-doping on the crystalline quali...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153738/ https://www.ncbi.nlm.nih.gov/pubmed/34056235 http://dx.doi.org/10.1021/acsomega.1c00452 |
Sumario: | [Image: see text] Congruent lithium niobate single crystals with a Ru:Mg co-dopant have been successfully grown using the Czochralski technique from the melt containing 0.02 mol % Ru with Mg of two varied concentrations (4.0 and 6.0 mol %). The effects of Ru and Mg co-doping on the crystalline quality were determined by high-resolution X-ray diffractometry, which confirmed that the crystalline quality is good and that the dopants are statistically distributed in the crystal. The Raman scattering analysis shows no change in the lattice vibration except a slight change in the peak width and intensity due to more asymmetry in the molecular charge, which leads to enhancement of the polarizability. The optical transmission spectra indicate that both the crystals have high optical transparency in the visible region, with a shift of the absorption edge toward shorter wavelengths, as compared to un-doped LN. The weak absorption band observed below 400 nm is attributed to Ru ions. The influence of co-doping in the electronic band gap energies is calculated by the Tauc relation. The refractive index is measured by using a prism coupler at two wavelengths (532 and 1064 nm). The calculated absorption coefficients and direct and indirect band gap energies for both the samples are found to be nearly the same within experimental error. A decrease in the birefringence is observed for the Ru:Mg(6 mol %) doped sample. The observed slight reduction in refractive indices with Ru:Mg co-doping is consistent with a rise in band gap energy, which is related to the change in absorption edge to the lower wavelength. The second harmonic generation (SHG) efficiency is measured by the Kurtz and Perry powder method, and a decrease in SHG efficiency for Ru:Mg(6 mol %) is observed. |
---|