Cargando…
Siamese Recurrent Neural Network with a Self-Attention Mechanism for Bioactivity Prediction
[Image: see text] Activity prediction plays an essential role in drug discovery by directing search of drug candidates in the relevant chemical space. Despite being applied successfully to image recognition and semantic similarity, the Siamese neural network has rarely been explored in drug discover...
Autores principales: | Fernández-Llaneza, Daniel, Ulander, Silas, Gogishvili, Dea, Nittinger, Eva, Zhao, Hongtao, Tyrchan, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153912/ https://www.ncbi.nlm.nih.gov/pubmed/34056263 http://dx.doi.org/10.1021/acsomega.1c01266 |
Ejemplares similares
-
Similarity-based pairing improves efficiency of siamese neural networks for regression tasks and uncertainty quantification
por: Zhang, Yumeng, et al.
Publicado: (2023) -
Nonadditivity in public and inhouse data: implications for drug design
por: Gogishvili, D., et al.
Publicado: (2021) -
Molecular optimization by capturing chemist’s intuition using deep neural networks
por: He, Jiazhen, et al.
Publicado: (2021) -
BioAct-Het: A Heterogeneous
Siamese Neural Network
for Bioactivity Prediction Using Novel Bioactivity Representation
por: Paykan Heyrati, Mehdi, et al.
Publicado: (2023) -
Siamese Neural Networks for Class Activity Detection
por: Li, Hang, et al.
Publicado: (2020)