Cargando…
Application of the Tissue-Engineered Plant Scaffold as a Vascular Patch
[Image: see text] Tissue-engineered plant scaffolds have shown promising applications in in vitro studies. To assess the applicability of natural plant scaffolds as vascular patches, we tested decellularized leaf and onion cellulose in a rat inferior vena cava patch venoplasty model. The leaf was de...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154004/ https://www.ncbi.nlm.nih.gov/pubmed/34056315 http://dx.doi.org/10.1021/acsomega.1c00804 |
Sumario: | [Image: see text] Tissue-engineered plant scaffolds have shown promising applications in in vitro studies. To assess the applicability of natural plant scaffolds as vascular patches, we tested decellularized leaf and onion cellulose in a rat inferior vena cava patch venoplasty model. The leaf was decellularized, and the scaffold was loaded with polylactic-co-glycolic acid (PLGA)-based rapamycin nanoparticles (nanoparticles). Nanoparticle-perfused leaves showed decreased neointimal thickness after implantation on day 14; there were also fewer CD68-positive cells and PCNA-positive cells in the neointima in the nanoparticle-perfused patches than in the control patches. Onion cellulose was decellularized, coated with rapamycin nanoparticles, and implanted in the rat; the nanoparticle-coated onion cellulose patches also showed decreased neointimal thickness. These data show that natural plant-based scaffolds may be used as novel scaffolds for tissue-engineered vascular patches. However, further modifications are needed to enhance patch strength for artery implantations. |
---|