Cargando…
Ranking-Oriented Quantitative Structure–Activity Relationship Modeling Combined with Assay-Wise Data Integration
[Image: see text] In ligand-based drug design, quantitative structure–activity relationship (QSAR) models play an important role in activity prediction. One of the major end points of QSAR models is half-maximal inhibitory concentration (IC(50)). Experimental IC(50) data from various research groups...
Autores principales: | Matsumoto, Katsuhisa, Miyao, Tomoyuki, Funatsu, Kimito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154010/ https://www.ncbi.nlm.nih.gov/pubmed/34056351 http://dx.doi.org/10.1021/acsomega.1c00463 |
Ejemplares similares
-
Exploring differential evolution for inverse QSAR analysis
por: Miyao, Tomoyuki, et al.
Publicado: (2017) -
Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel
por: Tamura, Shunsuke, et al.
Publicado: (2021) -
Cautious Label-Wise Ranking with Constraint Satisfaction
por: Carranza-Alarcon, Yonatan-Carlos, et al.
Publicado: (2020) -
List-wise learning to rank biomedical question-answer pairs with deep ranking recursive autoencoders
por: Yan, Yan, et al.
Publicado: (2020) -
Reduced rank regression: with applications to quantitative structure-activity relationships
por: Schmidli, Heinz
Publicado: (1995)