Cargando…
Quantitative Toxicity Prediction via Meta Ensembling of Multitask Deep Learning Models
[Image: see text] Toxicity prediction using quantitative structure–activity relationship has achieved significant progress in recent years. However, most existing machine learning methods in toxicity prediction utilize only one type of feature representation and one type of neural network, which ess...
Autores principales: | Karim, Abdul, Riahi, Vahid, Mishra, Avinash, Newton, M. A. Hakim, Dehzangi, Abdollah, Balle, Thomas, Sattar, Abdul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154128/ https://www.ncbi.nlm.nih.gov/pubmed/34056383 http://dx.doi.org/10.1021/acsomega.1c01247 |
Ejemplares similares
-
CardioTox net: a robust predictor for hERG channel blockade based on deep learning meta-feature ensembles
por: Karim, Abdul, et al.
Publicado: (2021) -
Enhancing protein backbone angle prediction by using simpler models of deep neural networks
por: Mataeimoghadam, Fereshteh, et al.
Publicado: (2020) -
Author Correction: Enhancing protein backbone angle prediction by using simpler models of deep neural networks
por: Mataeimoghadam, Fereshteh, et al.
Publicado: (2021) -
Multitask CapsNet: An Imbalanced Data Deep Learning
Method for Predicting Toxicants
por: Wang, Yiwei, et al.
Publicado: (2021) -
Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
por: Heffernan, Rhys, et al.
Publicado: (2015)