Cargando…

A General Method to Improve Fluorophores Using Deuterated Auxochromes

[Image: see text] Fluorescence microscopy relies on dyes that absorb and then emit photons. In addition to fluorescence, fluorophores can undergo photochemical processes that decrease quantum yield or result in spectral shifts and irreversible photobleaching. Chemical strategies that suppress these...

Descripción completa

Detalles Bibliográficos
Autores principales: Grimm, Jonathan B., Xie, Liangqi, Casler, Jason C., Patel, Ronak, Tkachuk, Ariana N., Falco, Natalie, Choi, Heejun, Lippincott-Schwartz, Jennifer, Brown, Timothy A., Glick, Benjamin S., Liu, Zhe, Lavis, Luke D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154212/
https://www.ncbi.nlm.nih.gov/pubmed/34056637
http://dx.doi.org/10.1021/jacsau.1c00006
Descripción
Sumario:[Image: see text] Fluorescence microscopy relies on dyes that absorb and then emit photons. In addition to fluorescence, fluorophores can undergo photochemical processes that decrease quantum yield or result in spectral shifts and irreversible photobleaching. Chemical strategies that suppress these undesirable pathways—thereby increasing the brightness and photostability of fluorophores—are crucial for advancing the frontier of bioimaging. Here, we describe a general method to improve small-molecule fluorophores by incorporating deuterium into the alkylamino auxochromes of rhodamines and other dyes. This strategy increases fluorescence quantum yield, inhibits photochemically induced spectral shifts, and slows irreparable photobleaching, yielding next-generation labels with improved performance in cellular imaging experiments.