Cargando…
Antidegradation Property of Alginate Materials by Riveting Functionalized Carbon Nanotubes on the Sugar Chain
[Image: see text] Alginate materials with the advantages of being renewable, inexpensive, and environment-friendly have been considered promising fiber materials. However, they are prone to degrade under UV light, limiting their large-scale application in the textile field. Herein, the fracture of g...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154228/ https://www.ncbi.nlm.nih.gov/pubmed/34056432 http://dx.doi.org/10.1021/acsomega.1c01159 |
Sumario: | [Image: see text] Alginate materials with the advantages of being renewable, inexpensive, and environment-friendly have been considered promising fiber materials. However, they are prone to degrade under UV light, limiting their large-scale application in the textile field. Herein, the fracture of glycosidic bonds during the degradation process is revealed clearly by Fourier transform infrared (FT-IR) and (1)H NMR. To effectively inhibit this process, functionalized multiwalled carbon nanotubes (MWCNTs) are chosen as dopants and used to interact with the sugar chain via hydrogen bonds. The results demonstrate that alginate materials with functionalized MWCNTs exhibit slower degradation rates. The intermolecular energy transfer between functionalized MWCNTs and sodium alginate (SA) is proposed for the antidegradation effect of functionalized MWCNTs, which is supported by the experiments. Moreover, SA/MWCNT fibers also show enhanced mechanical properties compared with pure alginate fibers. The appealing effect of the degradation inhibition feature makes the composite alginate materials very promising candidates for their future use in textile material development. |
---|