Cargando…

Leveraging Uncertainty from Deep Learning for Trustworthy Material Discovery Workflows

[Image: see text] In this paper, we leverage predictive uncertainty of deep neural networks to answer challenging questions material scientists usually encounter in machine learning-based material application workflows. First, we show that by leveraging predictive uncertainty, a user can determine t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jize, Kailkhura, Bhavya, Han, T. Yong-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154239/
https://www.ncbi.nlm.nih.gov/pubmed/34056423
http://dx.doi.org/10.1021/acsomega.1c00975
Descripción
Sumario:[Image: see text] In this paper, we leverage predictive uncertainty of deep neural networks to answer challenging questions material scientists usually encounter in machine learning-based material application workflows. First, we show that by leveraging predictive uncertainty, a user can determine the required training data set size to achieve a certain classification accuracy. Next, we propose uncertainty-guided decision referral to detect and refrain from making decisions on confusing samples. Finally, we show that predictive uncertainty can also be used to detect out-of-distribution test samples. We find that this scheme is accurate enough to detect a wide range of real-world shifts in data, e.g., changes in the image acquisition conditions or changes in the synthesis conditions. Using microstructure information from scanning electron microscope (SEM) images as an example use case, we show that leveraging uncertainty-aware deep learning can significantly improve the performance and dependability of classification models.