Cargando…
Leveraging Uncertainty from Deep Learning for Trustworthy Material Discovery Workflows
[Image: see text] In this paper, we leverage predictive uncertainty of deep neural networks to answer challenging questions material scientists usually encounter in machine learning-based material application workflows. First, we show that by leveraging predictive uncertainty, a user can determine t...
Autores principales: | Zhang, Jize, Kailkhura, Bhavya, Han, T. Yong-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154239/ https://www.ncbi.nlm.nih.gov/pubmed/34056423 http://dx.doi.org/10.1021/acsomega.1c00975 |
Ejemplares similares
-
Editorial: Safe and Trustworthy Machine Learning
por: Kailkhura, Bhavya, et al.
Publicado: (2021) -
Attribution-Driven Explanation of the Deep Neural
Network Model via Conditional Microstructure Image Synthesis
por: Liu, Shusen, et al.
Publicado: (2022) -
Bioinformatic workflow fragment discovery leveraging the social-aware knowledge graph
por: Diao, Jin, et al.
Publicado: (2022) -
A proposed artificial intelligence workflow to address application challenges leveraged on algorithm uncertainty
por: Li, Dantong, et al.
Publicado: (2022) -
Evidential deep learning for trustworthy prediction of enzyme commission number
por: Han, So-Ra, et al.
Publicado: (2023)