Cargando…
Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation
[Image: see text] The acceleration in design of new metal organic frameworks (MOFs) has led scientists to focus on high-throughput computational screening (HTCS) methods to quickly assess the promises of these fascinating materials in various applications. HTCS studies provide a massive amount of st...
Autores principales: | Altintas, Cigdem, Altundal, Omer Faruk, Keskin, Seda, Yildirim, Ramazan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154255/ https://www.ncbi.nlm.nih.gov/pubmed/33914526 http://dx.doi.org/10.1021/acs.jcim.1c00191 |
Ejemplares similares
-
Effect of Metal–Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs
por: Daglar, Hilal, et al.
Publicado: (2021) -
High-Throughput
Computational Screening of the Metal Organic Framework Database for
CH(4)/H(2) Separations
por: Altintas, Cigdem, et al.
Publicado: (2018) -
Metal Exchange Boosts the CO(2) Selectivity
of Metal Organic Frameworks Having Zn-Oxide Nodes
por: Avci, Gokay, et al.
Publicado: (2021) -
Computational Selection of High-Performing Covalent
Organic Frameworks for Adsorption and Membrane-Based CO(2)/H(2) Separation
por: Aksu, Gokhan Onder, et al.
Publicado: (2020) -
Effect of methylation of ionic liquids on the gas separation performance of ionic liquid/metal–organic framework composites
por: Nozari, Vahid, et al.
Publicado: (2018)