Cargando…
Secondary Structure-Driven Self-Assembly of Thiol-Reactive Polypept(o)ides
[Image: see text] Secondary structure formation differentiates polypeptides from most of the other synthetic polymers, and the transitions from random coils to rod-like α-helices or β-sheets represent an additional parameter to direct self-assembly and the morphology of nanostructures. We investigat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154267/ https://www.ncbi.nlm.nih.gov/pubmed/33830742 http://dx.doi.org/10.1021/acs.biomac.1c00253 |
Sumario: | [Image: see text] Secondary structure formation differentiates polypeptides from most of the other synthetic polymers, and the transitions from random coils to rod-like α-helices or β-sheets represent an additional parameter to direct self-assembly and the morphology of nanostructures. We investigated the influence of distinct secondary structures on the self-assembly of reactive amphiphilic polypept(o)ides. The individual morphologies can be preserved by core cross-linking via chemoselective disulfide bond formation. A series of thiol-responsive copolymers of racemic polysarcosine-block-poly(S-ethylsulfonyl-dl-cysteine) (pSar-b-p(dl)Cys), enantiopure polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) (pSar-b-p(l)Cys), and polysarcosine-block-poly(S-ethylsulfonyl-l-homocysteine) (pSar-b-p(l)Hcy) was prepared by N-carboxyanhydride polymerization. The secondary structure of the peptide segment varies from α-helices (pSar-b-p(l)Hcy) to antiparallel β-sheets (pSar-b-p(l)Cys) and disrupted β-sheets (pSar-b-p(dl)Cys). When subjected to nanoprecipitation, copolymers with antiparallel β-sheets display the strongest tendency to self-assemble, whereas disrupted β-sheets hardly induce aggregation. This translates to worm-like micelles, solely spherical micelles, or ellipsoidal structures, as analyzed by atomic force microscopy and cryogenic transmission electron microscopy, which underlines the potential of secondary structure-driven self-assembly of synthetic polypeptides. |
---|