Cargando…
In Vivo Fiber Optic Raman Spectroscopy of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and Duchenne Muscular Dystrophy
[Image: see text] Neuromuscular diseases result in muscle weakness, disability, and, in many instances, death. Preclinical models form the bedrock of research into these disorders, and the development of in vivo and potentially translational biomarkers for the accurate identification of disease is c...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154326/ https://www.ncbi.nlm.nih.gov/pubmed/33950665 http://dx.doi.org/10.1021/acschemneuro.0c00794 |
_version_ | 1783698988620316672 |
---|---|
author | Plesia, Maria Stevens, Oliver A. Lloyd, Gavin R. Kendall, Catherine A. Coldicott, Ian Kennerley, Aneurin J. Miller, Gaynor Shaw, Pamela J. Mead, Richard J. Day, John C. C. Alix, James J. P. |
author_facet | Plesia, Maria Stevens, Oliver A. Lloyd, Gavin R. Kendall, Catherine A. Coldicott, Ian Kennerley, Aneurin J. Miller, Gaynor Shaw, Pamela J. Mead, Richard J. Day, John C. C. Alix, James J. P. |
author_sort | Plesia, Maria |
collection | PubMed |
description | [Image: see text] Neuromuscular diseases result in muscle weakness, disability, and, in many instances, death. Preclinical models form the bedrock of research into these disorders, and the development of in vivo and potentially translational biomarkers for the accurate identification of disease is crucial. Spontaneous Raman spectroscopy can provide a rapid, label-free, and highly specific molecular fingerprint of tissue, making it an attractive potential biomarker. In this study, we have developed and tested an in vivo intramuscular fiber optic Raman technique in two mouse models of devastating human neuromuscular diseases, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy (SOD1(G93A) and mdx, respectively). The method identified diseased and healthy muscle with high classification accuracies (area under the receiver operating characteristic curves (AUROC): 0.76–0.92). In addition, changes in diseased muscle over time were also identified (AUROCs 0.89–0.97). Key spectral changes related to proteins and the loss of α-helix protein structure. Importantly, in vivo recording did not cause functional motor impairment and only a limited, resolving tissue injury was seen on high-resolution magnetic resonance imaging. Lastly, we demonstrate that ex vivo muscle from human patients with these conditions produced similar spectra to those observed in mice. We conclude that spontaneous Raman spectroscopy of muscle shows promise as a translational research tool. |
format | Online Article Text |
id | pubmed-8154326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-81543262021-05-27 In Vivo Fiber Optic Raman Spectroscopy of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and Duchenne Muscular Dystrophy Plesia, Maria Stevens, Oliver A. Lloyd, Gavin R. Kendall, Catherine A. Coldicott, Ian Kennerley, Aneurin J. Miller, Gaynor Shaw, Pamela J. Mead, Richard J. Day, John C. C. Alix, James J. P. ACS Chem Neurosci [Image: see text] Neuromuscular diseases result in muscle weakness, disability, and, in many instances, death. Preclinical models form the bedrock of research into these disorders, and the development of in vivo and potentially translational biomarkers for the accurate identification of disease is crucial. Spontaneous Raman spectroscopy can provide a rapid, label-free, and highly specific molecular fingerprint of tissue, making it an attractive potential biomarker. In this study, we have developed and tested an in vivo intramuscular fiber optic Raman technique in two mouse models of devastating human neuromuscular diseases, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy (SOD1(G93A) and mdx, respectively). The method identified diseased and healthy muscle with high classification accuracies (area under the receiver operating characteristic curves (AUROC): 0.76–0.92). In addition, changes in diseased muscle over time were also identified (AUROCs 0.89–0.97). Key spectral changes related to proteins and the loss of α-helix protein structure. Importantly, in vivo recording did not cause functional motor impairment and only a limited, resolving tissue injury was seen on high-resolution magnetic resonance imaging. Lastly, we demonstrate that ex vivo muscle from human patients with these conditions produced similar spectra to those observed in mice. We conclude that spontaneous Raman spectroscopy of muscle shows promise as a translational research tool. American Chemical Society 2021-05-05 /pmc/articles/PMC8154326/ /pubmed/33950665 http://dx.doi.org/10.1021/acschemneuro.0c00794 Text en © 2021 American Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Plesia, Maria Stevens, Oliver A. Lloyd, Gavin R. Kendall, Catherine A. Coldicott, Ian Kennerley, Aneurin J. Miller, Gaynor Shaw, Pamela J. Mead, Richard J. Day, John C. C. Alix, James J. P. In Vivo Fiber Optic Raman Spectroscopy of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and Duchenne Muscular Dystrophy |
title | In Vivo Fiber Optic Raman Spectroscopy
of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and
Duchenne Muscular Dystrophy |
title_full | In Vivo Fiber Optic Raman Spectroscopy
of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and
Duchenne Muscular Dystrophy |
title_fullStr | In Vivo Fiber Optic Raman Spectroscopy
of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and
Duchenne Muscular Dystrophy |
title_full_unstemmed | In Vivo Fiber Optic Raman Spectroscopy
of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and
Duchenne Muscular Dystrophy |
title_short | In Vivo Fiber Optic Raman Spectroscopy
of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and
Duchenne Muscular Dystrophy |
title_sort | in vivo fiber optic raman spectroscopy
of muscle in preclinical models of amyotrophic lateral sclerosis and
duchenne muscular dystrophy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154326/ https://www.ncbi.nlm.nih.gov/pubmed/33950665 http://dx.doi.org/10.1021/acschemneuro.0c00794 |
work_keys_str_mv | AT plesiamaria invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT stevensolivera invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT lloydgavinr invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT kendallcatherinea invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT coldicottian invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT kennerleyaneurinj invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT millergaynor invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT shawpamelaj invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT meadrichardj invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT dayjohncc invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy AT alixjamesjp invivofiberopticramanspectroscopyofmuscleinpreclinicalmodelsofamyotrophiclateralsclerosisandduchennemusculardystrophy |