Cargando…

Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9

[Image: see text] Engineering strategies to improve terpenoids’ production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered re...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Yafeng, He, Siqi, Abdallah, Ingy I., Jopkiewicz, Anita, Setroikromo, Rita, van Merkerk, Ronald, Tepper, Pieter G., Quax, Wim J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154554/
https://www.ncbi.nlm.nih.gov/pubmed/33877851
http://dx.doi.org/10.1021/acs.jafc.1c00498
_version_ 1783699041366835200
author Song, Yafeng
He, Siqi
Abdallah, Ingy I.
Jopkiewicz, Anita
Setroikromo, Rita
van Merkerk, Ronald
Tepper, Pieter G.
Quax, Wim J.
author_facet Song, Yafeng
He, Siqi
Abdallah, Ingy I.
Jopkiewicz, Anita
Setroikromo, Rita
van Merkerk, Ronald
Tepper, Pieter G.
Quax, Wim J.
author_sort Song, Yafeng
collection PubMed
description [Image: see text] Engineering strategies to improve terpenoids’ production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system was established in B. subtilis to facilitate precise and efficient genome editing. Then, this system was employed to engineer three more modules to improve amorphadiene production, including the terpene synthase module, the branch pathway module, and the central metabolic pathway module. Finally, our combination of all of the useful strategies within one strain significantly increased extracellular amorphadiene production from 81 to 116 mg/L after 48 h flask fermentation without medium optimization. For the first time, we attenuated the FPP-derived competing pathway to improve amorphadiene biosynthesis and investigated how the TCA cycle affects amorphadiene production in B. subtilis. Overall, this study provides a universal strategy for further increasing terpenoids’ production in B. subtilis by comprehensive and systematic metabolic engineering.
format Online
Article
Text
id pubmed-8154554
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-81545542021-05-27 Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9 Song, Yafeng He, Siqi Abdallah, Ingy I. Jopkiewicz, Anita Setroikromo, Rita van Merkerk, Ronald Tepper, Pieter G. Quax, Wim J. J Agric Food Chem [Image: see text] Engineering strategies to improve terpenoids’ production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system was established in B. subtilis to facilitate precise and efficient genome editing. Then, this system was employed to engineer three more modules to improve amorphadiene production, including the terpene synthase module, the branch pathway module, and the central metabolic pathway module. Finally, our combination of all of the useful strategies within one strain significantly increased extracellular amorphadiene production from 81 to 116 mg/L after 48 h flask fermentation without medium optimization. For the first time, we attenuated the FPP-derived competing pathway to improve amorphadiene biosynthesis and investigated how the TCA cycle affects amorphadiene production in B. subtilis. Overall, this study provides a universal strategy for further increasing terpenoids’ production in B. subtilis by comprehensive and systematic metabolic engineering. American Chemical Society 2021-04-20 2021-04-28 /pmc/articles/PMC8154554/ /pubmed/33877851 http://dx.doi.org/10.1021/acs.jafc.1c00498 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Song, Yafeng
He, Siqi
Abdallah, Ingy I.
Jopkiewicz, Anita
Setroikromo, Rita
van Merkerk, Ronald
Tepper, Pieter G.
Quax, Wim J.
Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9
title Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9
title_full Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9
title_fullStr Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9
title_full_unstemmed Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9
title_short Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9
title_sort engineering of multiple modules to improve amorphadiene production in bacillus subtilis using crispr-cas9
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154554/
https://www.ncbi.nlm.nih.gov/pubmed/33877851
http://dx.doi.org/10.1021/acs.jafc.1c00498
work_keys_str_mv AT songyafeng engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9
AT hesiqi engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9
AT abdallahingyi engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9
AT jopkiewiczanita engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9
AT setroikromorita engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9
AT vanmerkerkronald engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9
AT tepperpieterg engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9
AT quaxwimj engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9