Cargando…
Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9
[Image: see text] Engineering strategies to improve terpenoids’ production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered re...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154554/ https://www.ncbi.nlm.nih.gov/pubmed/33877851 http://dx.doi.org/10.1021/acs.jafc.1c00498 |
_version_ | 1783699041366835200 |
---|---|
author | Song, Yafeng He, Siqi Abdallah, Ingy I. Jopkiewicz, Anita Setroikromo, Rita van Merkerk, Ronald Tepper, Pieter G. Quax, Wim J. |
author_facet | Song, Yafeng He, Siqi Abdallah, Ingy I. Jopkiewicz, Anita Setroikromo, Rita van Merkerk, Ronald Tepper, Pieter G. Quax, Wim J. |
author_sort | Song, Yafeng |
collection | PubMed |
description | [Image: see text] Engineering strategies to improve terpenoids’ production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system was established in B. subtilis to facilitate precise and efficient genome editing. Then, this system was employed to engineer three more modules to improve amorphadiene production, including the terpene synthase module, the branch pathway module, and the central metabolic pathway module. Finally, our combination of all of the useful strategies within one strain significantly increased extracellular amorphadiene production from 81 to 116 mg/L after 48 h flask fermentation without medium optimization. For the first time, we attenuated the FPP-derived competing pathway to improve amorphadiene biosynthesis and investigated how the TCA cycle affects amorphadiene production in B. subtilis. Overall, this study provides a universal strategy for further increasing terpenoids’ production in B. subtilis by comprehensive and systematic metabolic engineering. |
format | Online Article Text |
id | pubmed-8154554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-81545542021-05-27 Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9 Song, Yafeng He, Siqi Abdallah, Ingy I. Jopkiewicz, Anita Setroikromo, Rita van Merkerk, Ronald Tepper, Pieter G. Quax, Wim J. J Agric Food Chem [Image: see text] Engineering strategies to improve terpenoids’ production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system was established in B. subtilis to facilitate precise and efficient genome editing. Then, this system was employed to engineer three more modules to improve amorphadiene production, including the terpene synthase module, the branch pathway module, and the central metabolic pathway module. Finally, our combination of all of the useful strategies within one strain significantly increased extracellular amorphadiene production from 81 to 116 mg/L after 48 h flask fermentation without medium optimization. For the first time, we attenuated the FPP-derived competing pathway to improve amorphadiene biosynthesis and investigated how the TCA cycle affects amorphadiene production in B. subtilis. Overall, this study provides a universal strategy for further increasing terpenoids’ production in B. subtilis by comprehensive and systematic metabolic engineering. American Chemical Society 2021-04-20 2021-04-28 /pmc/articles/PMC8154554/ /pubmed/33877851 http://dx.doi.org/10.1021/acs.jafc.1c00498 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Song, Yafeng He, Siqi Abdallah, Ingy I. Jopkiewicz, Anita Setroikromo, Rita van Merkerk, Ronald Tepper, Pieter G. Quax, Wim J. Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9 |
title | Engineering of Multiple Modules to Improve Amorphadiene
Production in Bacillus subtilis Using
CRISPR-Cas9 |
title_full | Engineering of Multiple Modules to Improve Amorphadiene
Production in Bacillus subtilis Using
CRISPR-Cas9 |
title_fullStr | Engineering of Multiple Modules to Improve Amorphadiene
Production in Bacillus subtilis Using
CRISPR-Cas9 |
title_full_unstemmed | Engineering of Multiple Modules to Improve Amorphadiene
Production in Bacillus subtilis Using
CRISPR-Cas9 |
title_short | Engineering of Multiple Modules to Improve Amorphadiene
Production in Bacillus subtilis Using
CRISPR-Cas9 |
title_sort | engineering of multiple modules to improve amorphadiene
production in bacillus subtilis using
crispr-cas9 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154554/ https://www.ncbi.nlm.nih.gov/pubmed/33877851 http://dx.doi.org/10.1021/acs.jafc.1c00498 |
work_keys_str_mv | AT songyafeng engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9 AT hesiqi engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9 AT abdallahingyi engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9 AT jopkiewiczanita engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9 AT setroikromorita engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9 AT vanmerkerkronald engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9 AT tepperpieterg engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9 AT quaxwimj engineeringofmultiplemodulestoimproveamorphadieneproductioninbacillussubtilisusingcrisprcas9 |