Cargando…
Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer
OBJECTIVE: To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver metastasis with that of radiologists. MATERIALS AND METHODS: This clinical retrospective study used 4386-slice computed tomography (CT) images and labels from a training cohort (502...
Autores principales: | Kim, Kiwook, Kim, Sungwon, Han, Kyunghwa, Bae, Heejin, Shin, Jaeseung, Lim, Joon Seok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154788/ https://www.ncbi.nlm.nih.gov/pubmed/33686820 http://dx.doi.org/10.3348/kjr.2020.0447 |
Ejemplares similares
-
Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction
por: Park, June, et al.
Publicado: (2022) -
Role of CT in Differentiating Malignant Focal Splenic Lesions
por: Jang, Siwon, et al.
Publicado: (2018) -
LI-RADS Version 2018 Treatment Response Algorithm: Diagnostic Performance after Transarterial Radioembolization for Hepatocellular Carcinoma
por: Yoon, Jongjin, et al.
Publicado: (2021) -
Evaluation of Early Response to Treatment of Hepatocellular Carcinoma with Yttrium-90 Radioembolization Using Quantitative Computed Tomography Analysis
por: Kim, Sungwon, et al.
Publicado: (2019) -
Comparison of Multidetector CT and Gadobutrol-Enhanced MR Imaging for Evaluation of Small, Solid Pancreatic Lesions
por: Choi, Tae Won, et al.
Publicado: (2016)