Cargando…
Machine Learning Prediction of Allosteric Drug Activity from Molecular Dynamics
[Image: see text] Allosteric drugs have been attracting increasing interest over the past few years. In this context, it is common practice to use high-throughput screening for the discovery of non-natural allosteric drugs. While the discovery stage is supported by a growing amount of biological inf...
Autores principales: | Marchetti, Filippo, Moroni, Elisabetta, Pandini, Alessandro, Colombo, Giorgio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154828/ https://www.ncbi.nlm.nih.gov/pubmed/33843228 http://dx.doi.org/10.1021/acs.jpclett.1c00045 |
Ejemplares similares
-
Machine Learning of Allosteric Effects: The Analysis
of Ligand-Induced Dynamics to Predict Functional Effects in TRAP1
por: Ferraro, Mariarosaria, et al.
Publicado: (2020) -
Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands
por: Vettoretti, Gerolamo, et al.
Publicado: (2016) -
Molecular Mechanism of Allosteric Communication in Hsp70 Revealed by Molecular Dynamics Simulations
por: Chiappori, Federica, et al.
Publicado: (2012) -
The Answer Lies in the Energy: How Simple Atomistic
Molecular Dynamics Simulations May Hold the Key to Epitope Prediction
on the Fully Glycosylated SARS-CoV-2 Spike Protein
por: Serapian, Stefano A., et al.
Publicado: (2020) -
Molecular Dynamics Simulations of Hsp90 with an Eye to Inhibitor Design
por: Moroni, Elisabetta, et al.
Publicado: (2012)