Cargando…

A biphasic multilayer computational model of human skin

The present study investigates the layer-specific mechanical behavior of human skin. Motivated by skin’s histology, a biphasic model is proposed which differentiates between epidermis, papillary and reticular dermis, and hypodermis. Inverse analysis of ex vivo tensile and in vivo suction experiments...

Descripción completa

Detalles Bibliográficos
Autores principales: Sachs, David, Wahlsten, Adam, Kozerke, Sebastian, Restivo, Gaetana, Mazza, Edoardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154831/
https://www.ncbi.nlm.nih.gov/pubmed/33566274
http://dx.doi.org/10.1007/s10237-021-01424-w
_version_ 1783699079378763776
author Sachs, David
Wahlsten, Adam
Kozerke, Sebastian
Restivo, Gaetana
Mazza, Edoardo
author_facet Sachs, David
Wahlsten, Adam
Kozerke, Sebastian
Restivo, Gaetana
Mazza, Edoardo
author_sort Sachs, David
collection PubMed
description The present study investigates the layer-specific mechanical behavior of human skin. Motivated by skin’s histology, a biphasic model is proposed which differentiates between epidermis, papillary and reticular dermis, and hypodermis. Inverse analysis of ex vivo tensile and in vivo suction experiments yields mechanical parameters for each layer and predicts a stiff reticular dermis and successively softer papillary dermis, epidermis and hypodermis. Layer-specific analysis of simulations underlines the dominating role of the reticular dermis in tensile loading. Furthermore, it shows that the observed out-of-plane deflection in ex vivo tensile tests is a direct consequence of the layered structure of skin. In in vivo suction experiments, the softer upper layers strongly influence the mechanical response, whose dissipative part is determined by interstitial fluid redistribution within the tissue. Magnetic resonance imaging-based visualization of skin deformation in suction experiments confirms the deformation pattern predicted by the multilayer model, showing a consistent decrease in dermal thickness for large probe opening diameters. SUPPLEMENTARY INFORMATION: The online version supplementary material available at 10.1007/s10237-021-01424-w.
format Online
Article
Text
id pubmed-8154831
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-81548312021-06-01 A biphasic multilayer computational model of human skin Sachs, David Wahlsten, Adam Kozerke, Sebastian Restivo, Gaetana Mazza, Edoardo Biomech Model Mechanobiol Original Paper The present study investigates the layer-specific mechanical behavior of human skin. Motivated by skin’s histology, a biphasic model is proposed which differentiates between epidermis, papillary and reticular dermis, and hypodermis. Inverse analysis of ex vivo tensile and in vivo suction experiments yields mechanical parameters for each layer and predicts a stiff reticular dermis and successively softer papillary dermis, epidermis and hypodermis. Layer-specific analysis of simulations underlines the dominating role of the reticular dermis in tensile loading. Furthermore, it shows that the observed out-of-plane deflection in ex vivo tensile tests is a direct consequence of the layered structure of skin. In in vivo suction experiments, the softer upper layers strongly influence the mechanical response, whose dissipative part is determined by interstitial fluid redistribution within the tissue. Magnetic resonance imaging-based visualization of skin deformation in suction experiments confirms the deformation pattern predicted by the multilayer model, showing a consistent decrease in dermal thickness for large probe opening diameters. SUPPLEMENTARY INFORMATION: The online version supplementary material available at 10.1007/s10237-021-01424-w. Springer Berlin Heidelberg 2021-02-10 2021 /pmc/articles/PMC8154831/ /pubmed/33566274 http://dx.doi.org/10.1007/s10237-021-01424-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Paper
Sachs, David
Wahlsten, Adam
Kozerke, Sebastian
Restivo, Gaetana
Mazza, Edoardo
A biphasic multilayer computational model of human skin
title A biphasic multilayer computational model of human skin
title_full A biphasic multilayer computational model of human skin
title_fullStr A biphasic multilayer computational model of human skin
title_full_unstemmed A biphasic multilayer computational model of human skin
title_short A biphasic multilayer computational model of human skin
title_sort biphasic multilayer computational model of human skin
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154831/
https://www.ncbi.nlm.nih.gov/pubmed/33566274
http://dx.doi.org/10.1007/s10237-021-01424-w
work_keys_str_mv AT sachsdavid abiphasicmultilayercomputationalmodelofhumanskin
AT wahlstenadam abiphasicmultilayercomputationalmodelofhumanskin
AT kozerkesebastian abiphasicmultilayercomputationalmodelofhumanskin
AT restivogaetana abiphasicmultilayercomputationalmodelofhumanskin
AT mazzaedoardo abiphasicmultilayercomputationalmodelofhumanskin
AT sachsdavid biphasicmultilayercomputationalmodelofhumanskin
AT wahlstenadam biphasicmultilayercomputationalmodelofhumanskin
AT kozerkesebastian biphasicmultilayercomputationalmodelofhumanskin
AT restivogaetana biphasicmultilayercomputationalmodelofhumanskin
AT mazzaedoardo biphasicmultilayercomputationalmodelofhumanskin