Cargando…
Cataloguing the bacterial diversity in the active ectomycorrhizal zone of Astraeus from a dry deciduous forest of Shorea
The plant microbiome has been considered one of the most researched areas of microbial biodiversity, yet very little information is available on the microbial communities prevailing in the mushroom's ectomycorrhizosphere. Ectomycorrhizal symbioses often result in the formation of a favourable n...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pensoft Publishers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154865/ https://www.ncbi.nlm.nih.gov/pubmed/34054322 http://dx.doi.org/10.3897/BDJ.9.e63086 |
Sumario: | The plant microbiome has been considered one of the most researched areas of microbial biodiversity, yet very little information is available on the microbial communities prevailing in the mushroom's ectomycorrhizosphere. Ectomycorrhizal symbioses often result in the formation of a favourable niche which enables the thriving of various microbial symbionts where these symbionts endorse functions, such as quorum sensing, biofilm formation, volatile microbial compound (VOC) production, regulation of microbial gene expression, symbiosis and virulence. The identification of hidden uncultured microbial communities around the active ectomycorrhizal zone of Astraeus from dry deciduous sal forest of Jharkhand, India was carried out using MinION Oxford Nanopore sequencing of 16S rRNA amplicons genes. High richness of Operational Taxonomic Units (1,905 OTUs) was observed. We recorded 25 distinct phyla. Proteobacteria (36%) was the most abundant phylum, followed by Firmicutes (28%), Actinobacteria (10%) and Bacteroidetes (6%), whereas Gammaproteobacteria was the most abundant class of bacterial communities in the active ectomycorrhizal zone. The ectomycorrhizosphere soil has abundant phosphate-solubilising bacteria (PSB). This is the first report of the ectomycorrhizosphere microbiome associated with Astraeus. |
---|