Cargando…
A covered eye fails to follow an object moving in depth
To clearly view approaching objects, the eyes rotate inward (vergence), and the intraocular lenses focus (accommodation). Current ocular control models assume both eyes are driven by unitary vergence and unitary accommodation commands that causally interact. The models typically describe discrete ga...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154899/ https://www.ncbi.nlm.nih.gov/pubmed/34040063 http://dx.doi.org/10.1038/s41598-021-90371-8 |
Sumario: | To clearly view approaching objects, the eyes rotate inward (vergence), and the intraocular lenses focus (accommodation). Current ocular control models assume both eyes are driven by unitary vergence and unitary accommodation commands that causally interact. The models typically describe discrete gaze shifts to non-accommodative targets performed under laboratory conditions. We probe these unitary signals using a physical stimulus moving in depth on the midline while recording vergence and accommodation simultaneously from both eyes in normal observers. Using monocular viewing, retinal disparity is removed, leaving only monocular cues for interpreting the object’s motion in depth. The viewing eye always followed the target’s motion. However, the occluded eye did not follow the target, and surprisingly, rotated out of phase with it. In contrast, accommodation in both eyes was synchronized with the target under monocular viewing. The results challenge existing unitary vergence command theories, and causal accommodation-vergence linkage. |
---|