Cargando…
Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a hu...
Autores principales: | Hicks, Steven A., Isaksen, Jonas L., Thambawita, Vajira, Ghouse, Jonas, Ahlberg, Gustav, Linneberg, Allan, Grarup, Niels, Strümke, Inga, Ellervik, Christina, Olesen, Morten Salling, Hansen, Torben, Graff, Claus, Holstein-Rathlou, Niels-Henrik, Halvorsen, Pål, Maleckar, Mary M., Riegler, Michael A., Kanters, Jørgen K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154909/ https://www.ncbi.nlm.nih.gov/pubmed/34040033 http://dx.doi.org/10.1038/s41598-021-90285-5 |
Ejemplares similares
-
DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
por: Thambawita, Vajira, et al.
Publicado: (2021) -
Usefulness of Heat Map Explanations for Deep-Learning-Based Electrocardiogram Analysis
por: Storås, Andrea M., et al.
Publicado: (2023) -
Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
por: Thambawita, Vajira, et al.
Publicado: (2021) -
On evaluation metrics for medical applications of artificial intelligence
por: Hicks, Steven A., et al.
Publicado: (2022) -
GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos
por: Monakhov, Vladimir, et al.
Publicado: (2023)