Cargando…
A machine-learning-based alloy design platform that enables both forward and inverse predictions for thermo-mechanically controlled processed (TMCP) steel alloys
Predicting mechanical properties such as yield strength (YS) and ultimate tensile strength (UTS) is an intricate undertaking in practice, notwithstanding a plethora of well-established theoretical and empirical models. A data-driven approach should be a fundamental exercise when making YS/UTS predic...
Autores principales: | Lee, Jin-Woong, Park, Chaewon, Do Lee, Byung, Park, Joonseo, Goo, Nam Hoon, Sohn, Kee-Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155048/ https://www.ncbi.nlm.nih.gov/pubmed/34040040 http://dx.doi.org/10.1038/s41598-021-90237-z |
Ejemplares similares
-
Assessment of the Effect of Laser Welding on the Properties and Structure of TMCP Steel Butt Joints
por: Górka, Jacek
Publicado: (2020) -
Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel
por: Zhu, Qingyan, et al.
Publicado: (2021) -
Assessment of the Weldability of T-Welded Joints in 10 mm Thick TMCP Steel Using Laser Beam
por: Górka, Jacek
Publicado: (2018) -
Carbon and alloy steels
por: Davis, J R
Publicado: (1996) -
ASM speciality handbook carbon and alloy steels
por: American Society for Metals. Metals Park, Ohio
Publicado: (1995)