Cargando…
Cell morphology-based machine learning models for human cell state classification
Herein, we implement and access machine learning architectures to ascertain models that differentiate healthy from apoptotic cells using exclusively forward (FSC) and side (SSC) scatter flow cytometry information. To generate training data, colorectal cancer HCT116 cells were subjected to miR-34a tr...
Autores principales: | Li, Yi, Nowak, Chance M., Pham, Uyen, Nguyen, Khai, Bleris, Leonidas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155075/ https://www.ncbi.nlm.nih.gov/pubmed/34039992 http://dx.doi.org/10.1038/s41540-021-00180-y |
Ejemplares similares
-
Uncoupling gene expression noise along the central dogma using genome engineered human cell lines
por: Quarton, Tyler, et al.
Publicado: (2020) -
Machine learning-based approaches for identifying human blood cells harboring CRISPR-mediated fetal chromatin domain ablations
por: Li, Yi, et al.
Publicado: (2022) -
Impact of variability in cell cycle periodicity on cell population dynamics
por: Nowak, Chance M., et al.
Publicado: (2023) -
Genetic physical unclonable functions in human cells
por: Li, Yi, et al.
Publicado: (2022) -
Guide RNA engineering for versatile Cas9 functionality
por: Nowak, Chance M., et al.
Publicado: (2016)