Cargando…
Differentially private density estimation with skew-normal mixtures model
The protection of private data is a hot research issue in the era of big data. Differential privacy is a strong privacy guarantees in data analysis. In this paper, we propose DP-MSNM, a parametric density estimation algorithm using multivariate skew-normal mixtures (MSNM) model to differential priva...
Autor principal: | Wu, Weisan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155126/ https://www.ncbi.nlm.nih.gov/pubmed/34040031 http://dx.doi.org/10.1038/s41598-021-90276-6 |
Ejemplares similares
-
Differentially Private and Skew-Aware Spatial Decompositions for Mobile Crowdsensing
por: Kim, Jong Seon, et al.
Publicado: (2018) -
Finite mixture of skewed distributions
por: Lachos Dávila, Víctor Hugo, et al.
Publicado: (2018) -
Deconvoluting kernel density estimation and regression for locally differentially private data
por: Farokhi, Farhad
Publicado: (2020) -
Information–Theoretic Aspects of Location Parameter Estimation under Skew–Normal Settings
por: Contreras-Reyes, Javier E.
Publicado: (2022) -
Class enumeration false positive in skew-t family of continuous growth mixture models
por: Guerra-Peña, Kiero, et al.
Publicado: (2020)