Cargando…
Hydropower generation by transpiration from microporous alumina
Traditional hydropower generation is one of the most sustainable energy sources; however, the local environmental impact of hydroelectric dams and reservoirs is serious, and hydroelectric power requires high-cost turbines and generators. Because these installations utilize gravitational potential en...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155211/ https://www.ncbi.nlm.nih.gov/pubmed/34040067 http://dx.doi.org/10.1038/s41598-021-90374-5 |
Sumario: | Traditional hydropower generation is one of the most sustainable energy sources; however, the local environmental impact of hydroelectric dams and reservoirs is serious, and hydroelectric power requires high-cost turbines and generators. Because these installations utilize gravitational potential energy of massive volumes of falling water, this sort of hydropower generation is unsuitable for ubiquitous, small-scale energy production. Here, we report that wetting and evaporation of pure water from a tiny block of porous alumina generates electrical current in the direction of water transpiration. The current induced in microporous alumina is associated with mass transport of water accompanying ions that accumulate near the negatively charged surface of alumina pores. Without any pre-treatment or additives, once evaporation commences, a 3 × 3 cm(2) piece of alumina can generate an open-circuit voltage as large as 0.27 V. The power generation scheme we propose here is simple, clean, and versatile, and it can be employed anywhere, as it utilizes only spontaneous capillary action of water and Coulombic interaction at the alumina-water interface, without requiring any input of heat or light. |
---|