Cargando…

Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites

Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Shepelin, Nick A., Sherrell, Peter C., Skountzos, Emmanuel N., Goudeli, Eirini, Zhang, Jizhen, Lussini, Vanessa C., Imtiaz, Beenish, Usman, Ken Aldren S., Dicinoski, Greg W., Shapter, Joseph G., Razal, Joselito M., Ellis, Amanda V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155213/
https://www.ncbi.nlm.nih.gov/pubmed/34039975
http://dx.doi.org/10.1038/s41467-021-23341-3
Descripción
Sumario:Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters. Here, by combining molecular dynamics simulations, piezoresponse force microscopy, and electrodynamic measurements, we reveal a hitherto unseen polarization locking phenomena of poly(vinylidene fluoride–co–trifluoroethylene) (PVDF-TrFE) perpendicular to the basal plane of two-dimensional (2D) Ti(3)C(2)T(x) MXene nanosheets. This polarization locking, driven by strong electrostatic interactions enabled exceptional energy harvesting performance, with a measured piezoelectric charge coefficient, d(33), of −52.0 picocoulombs per newton, significantly higher than electrically poled PVDF-TrFE (approximately −38 picocoulombs per newton). This study provides a new fundamental and low-energy input mechanism of poling fluoropolymers, which enables new levels of performance in electromechanical technologies.