Cargando…

Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites

Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Shepelin, Nick A., Sherrell, Peter C., Skountzos, Emmanuel N., Goudeli, Eirini, Zhang, Jizhen, Lussini, Vanessa C., Imtiaz, Beenish, Usman, Ken Aldren S., Dicinoski, Greg W., Shapter, Joseph G., Razal, Joselito M., Ellis, Amanda V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155213/
https://www.ncbi.nlm.nih.gov/pubmed/34039975
http://dx.doi.org/10.1038/s41467-021-23341-3
_version_ 1783699157701099520
author Shepelin, Nick A.
Sherrell, Peter C.
Skountzos, Emmanuel N.
Goudeli, Eirini
Zhang, Jizhen
Lussini, Vanessa C.
Imtiaz, Beenish
Usman, Ken Aldren S.
Dicinoski, Greg W.
Shapter, Joseph G.
Razal, Joselito M.
Ellis, Amanda V.
author_facet Shepelin, Nick A.
Sherrell, Peter C.
Skountzos, Emmanuel N.
Goudeli, Eirini
Zhang, Jizhen
Lussini, Vanessa C.
Imtiaz, Beenish
Usman, Ken Aldren S.
Dicinoski, Greg W.
Shapter, Joseph G.
Razal, Joselito M.
Ellis, Amanda V.
author_sort Shepelin, Nick A.
collection PubMed
description Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters. Here, by combining molecular dynamics simulations, piezoresponse force microscopy, and electrodynamic measurements, we reveal a hitherto unseen polarization locking phenomena of poly(vinylidene fluoride–co–trifluoroethylene) (PVDF-TrFE) perpendicular to the basal plane of two-dimensional (2D) Ti(3)C(2)T(x) MXene nanosheets. This polarization locking, driven by strong electrostatic interactions enabled exceptional energy harvesting performance, with a measured piezoelectric charge coefficient, d(33), of −52.0 picocoulombs per newton, significantly higher than electrically poled PVDF-TrFE (approximately −38 picocoulombs per newton). This study provides a new fundamental and low-energy input mechanism of poling fluoropolymers, which enables new levels of performance in electromechanical technologies.
format Online
Article
Text
id pubmed-8155213
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81552132021-06-11 Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites Shepelin, Nick A. Sherrell, Peter C. Skountzos, Emmanuel N. Goudeli, Eirini Zhang, Jizhen Lussini, Vanessa C. Imtiaz, Beenish Usman, Ken Aldren S. Dicinoski, Greg W. Shapter, Joseph G. Razal, Joselito M. Ellis, Amanda V. Nat Commun Article Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters. Here, by combining molecular dynamics simulations, piezoresponse force microscopy, and electrodynamic measurements, we reveal a hitherto unseen polarization locking phenomena of poly(vinylidene fluoride–co–trifluoroethylene) (PVDF-TrFE) perpendicular to the basal plane of two-dimensional (2D) Ti(3)C(2)T(x) MXene nanosheets. This polarization locking, driven by strong electrostatic interactions enabled exceptional energy harvesting performance, with a measured piezoelectric charge coefficient, d(33), of −52.0 picocoulombs per newton, significantly higher than electrically poled PVDF-TrFE (approximately −38 picocoulombs per newton). This study provides a new fundamental and low-energy input mechanism of poling fluoropolymers, which enables new levels of performance in electromechanical technologies. Nature Publishing Group UK 2021-05-26 /pmc/articles/PMC8155213/ /pubmed/34039975 http://dx.doi.org/10.1038/s41467-021-23341-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Shepelin, Nick A.
Sherrell, Peter C.
Skountzos, Emmanuel N.
Goudeli, Eirini
Zhang, Jizhen
Lussini, Vanessa C.
Imtiaz, Beenish
Usman, Ken Aldren S.
Dicinoski, Greg W.
Shapter, Joseph G.
Razal, Joselito M.
Ellis, Amanda V.
Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites
title Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites
title_full Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites
title_fullStr Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites
title_full_unstemmed Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites
title_short Interfacial piezoelectric polarization locking in printable Ti(3)C(2)T(x) MXene-fluoropolymer composites
title_sort interfacial piezoelectric polarization locking in printable ti(3)c(2)t(x) mxene-fluoropolymer composites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155213/
https://www.ncbi.nlm.nih.gov/pubmed/34039975
http://dx.doi.org/10.1038/s41467-021-23341-3
work_keys_str_mv AT shepelinnicka interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT sherrellpeterc interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT skountzosemmanueln interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT goudelieirini interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT zhangjizhen interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT lussinivanessac interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT imtiazbeenish interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT usmankenaldrens interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT dicinoskigregw interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT shapterjosephg interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT razaljoselitom interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites
AT ellisamandav interfacialpiezoelectricpolarizationlockinginprintableti3c2txmxenefluoropolymercomposites