Cargando…
Machine Learning for Predicting Heart Failure Progression in Hypertrophic Cardiomyopathy
Background: Development of advanced heart failure (HF) symptoms is the most common adverse pathway in hypertrophic cardiomyopathy (HCM) patients. Currently, there is a limited ability to identify HCM patients at risk of HF. Objectives: In this study, we present a machine learning (ML)-based model to...
Autores principales: | Fahmy, Ahmed S., Rowin, Ethan J., Manning, Warren J., Maron, Martin S., Nezafat, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155292/ https://www.ncbi.nlm.nih.gov/pubmed/34055932 http://dx.doi.org/10.3389/fcvm.2021.647857 |
Ejemplares similares
-
Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy
por: Fahmy, Ahmed S., et al.
Publicado: (2022) -
Improved Quantification of Myocardium Scar in Late Gadolinium Enhancement Images: Deep Learning Based Image Fusion Approach
por: Fahmy, Ahmed S., et al.
Publicado: (2021) -
Differing strategies for sudden death prevention in hypertrophic cardiomyopathy
por: Maron, Martin S, et al.
Publicado: (2023) -
Winter Is Coming: The Slippery Slope of Defining Disease and the Implications for Hypertrophic Cardiomyopathy
por: Rowin, Ethan J., et al.
Publicado: (2022) -
Is Hypertrophic Cardiomyopathy Always a Familial and Inherited Disease?
por: Bonaventura, Jiri, et al.
Publicado: (2023)