Cargando…
Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime
[Image: see text] Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155341/ https://www.ncbi.nlm.nih.gov/pubmed/33822587 http://dx.doi.org/10.1021/acsnano.0c09661 |
_version_ | 1783699180092391424 |
---|---|
author | Zou, Yajun Xiao, Kai Qin, Qing Shi, Jian-Wen Heil, Tobias Markushyna, Yevheniia Jiang, Lei Antonietti, Markus Savateev, Aleksandr |
author_facet | Zou, Yajun Xiao, Kai Qin, Qing Shi, Jian-Wen Heil, Tobias Markushyna, Yevheniia Jiang, Lei Antonietti, Markus Savateev, Aleksandr |
author_sort | Zou, Yajun |
collection | PubMed |
description | [Image: see text] Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 10(5) s(–1). Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes. |
format | Online Article Text |
id | pubmed-8155341 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-81553412021-05-28 Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime Zou, Yajun Xiao, Kai Qin, Qing Shi, Jian-Wen Heil, Tobias Markushyna, Yevheniia Jiang, Lei Antonietti, Markus Savateev, Aleksandr ACS Nano [Image: see text] Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 10(5) s(–1). Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes. American Chemical Society 2021-04-06 2021-04-27 /pmc/articles/PMC8155341/ /pubmed/33822587 http://dx.doi.org/10.1021/acsnano.0c09661 Text en © 2021 The Authors. Published by American Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Zou, Yajun Xiao, Kai Qin, Qing Shi, Jian-Wen Heil, Tobias Markushyna, Yevheniia Jiang, Lei Antonietti, Markus Savateev, Aleksandr Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime |
title | Enhanced
Organic Photocatalysis in Confined Flow through
a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond
Regime |
title_full | Enhanced
Organic Photocatalysis in Confined Flow through
a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond
Regime |
title_fullStr | Enhanced
Organic Photocatalysis in Confined Flow through
a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond
Regime |
title_full_unstemmed | Enhanced
Organic Photocatalysis in Confined Flow through
a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond
Regime |
title_short | Enhanced
Organic Photocatalysis in Confined Flow through
a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond
Regime |
title_sort | enhanced
organic photocatalysis in confined flow through
a carbon nitride nanotube membrane with conversions in the millisecond
regime |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155341/ https://www.ncbi.nlm.nih.gov/pubmed/33822587 http://dx.doi.org/10.1021/acsnano.0c09661 |
work_keys_str_mv | AT zouyajun enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime AT xiaokai enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime AT qinqing enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime AT shijianwen enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime AT heiltobias enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime AT markushynayevheniia enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime AT jianglei enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime AT antoniettimarkus enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime AT savateevaleksandr enhancedorganicphotocatalysisinconfinedflowthroughacarbonnitridenanotubemembranewithconversionsinthemillisecondregime |