Cargando…
An Interpretable Hand-Crafted Feature-Based Model for Atrial Fibrillation Detection
Atrial Fibrillation (AF) is the most common type of cardiac arrhythmia. Early diagnosis of AF helps to improve therapy and prognosis. Machine Learning (ML) has been successfully applied to improve the effectiveness of Computer-Aided Diagnosis (CADx) systems for AF detection. Presenting an explanatio...
Autores principales: | Rouhi, Rahimeh, Clausel, Marianne, Oster, Julien, Lauer, Fabien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155476/ https://www.ncbi.nlm.nih.gov/pubmed/34054575 http://dx.doi.org/10.3389/fphys.2021.657304 |
Ejemplares similares
-
Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation
por: Ogbomo-Harmitt, Shaheim, et al.
Publicado: (2023) -
Media Forensics Considerations on DeepFake Detection with Hand-Crafted Features
por: Siegel, Dennis, et al.
Publicado: (2021) -
An Introduction to Murine Models of Atrial Fibrillation
por: Riley, Genna, et al.
Publicado: (2012) -
Real-Time Rotational Activity Detection in Atrial Fibrillation
por: Ríos-Muñoz, Gonzalo R., et al.
Publicado: (2018) -
Corrigendum: Real-Time Rotational Activity Detection in Atrial Fibrillation
por: Ríos-Muñoz, Gonzalo R., et al.
Publicado: (2018)