Cargando…
Deep Learned Quantization-Based Codec for 3D Airborne LiDAR Point Cloud Images
This paper introduces a novel deep learned quantization-based coding for 3D Airborne LiDAR (Light detection and ranging) point cloud (pcd) image (DLQCPCD). The raw pcd signals are sampled and transformed by applying the Nyquist signal sampling and Min-max signal transformation techniques, respective...
Autores principales: | Tamilmathi, A. Christoper, Chithra, P. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155491/ https://www.ncbi.nlm.nih.gov/pubmed/34055900 http://dx.doi.org/10.3389/frobt.2021.606770 |
Ejemplares similares
-
Localization and Mapping on Agriculture Based on Point-Feature Extraction and Semiplanes Segmentation From 3D LiDAR Data
por: Aguiar, André Silva, et al.
Publicado: (2022) -
On the precision of 6 DoF IMU-LiDAR based localization in GNSS-denied scenarios
por: Frosi, Matteo, et al.
Publicado: (2023) -
Method for extraction of airborne LiDAR point cloud buildings based on segmentation
por: Liu, Maohua, et al.
Publicado: (2020) -
Deep Learning for LiDAR Point Cloud Classification in Remote Sensing
por: Diab, Ahmed, et al.
Publicado: (2022) -
LiDAR Point Cloud Recognition of Overhead Catenary System with Deep Learning
por: Lin, Shuai, et al.
Publicado: (2020)