Cargando…
In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study
Magnetometry based on nitrogen-vacancy (NV) centers in diamond is a novel technique capable of measuring magnetic fields with high sensitivity and high spatial resolution. With the further advancements of these sensors, they may open up novel approaches for the 2D imaging of neural signals in vitro....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155532/ https://www.ncbi.nlm.nih.gov/pubmed/34054404 http://dx.doi.org/10.3389/fnins.2021.643614 |
_version_ | 1783699225931939840 |
---|---|
author | Karadas, Mürsel Olsson, Christoffer Winther Hansen, Nikolaj Perrier, Jean-François Webb, James Luke Huck, Alexander Andersen, Ulrik Lund Thielscher, Axel |
author_facet | Karadas, Mürsel Olsson, Christoffer Winther Hansen, Nikolaj Perrier, Jean-François Webb, James Luke Huck, Alexander Andersen, Ulrik Lund Thielscher, Axel |
author_sort | Karadas, Mürsel |
collection | PubMed |
description | Magnetometry based on nitrogen-vacancy (NV) centers in diamond is a novel technique capable of measuring magnetic fields with high sensitivity and high spatial resolution. With the further advancements of these sensors, they may open up novel approaches for the 2D imaging of neural signals in vitro. In the present study, we investigate the feasibility of NV-based imaging by numerically simulating the magnetic signal from the auditory pathway of a rodent brainstem slice (ventral cochlear nucleus, VCN, to the medial trapezoid body, MNTB) as stimulated by both electric and optic stimulation. The resulting signal from these two stimulation methods are evaluated and compared. A realistic pathway model was created based on published data of the neural morphologies and channel dynamics of the globular bushy cells in the VCN and their axonal projections to the principal cells in the MNTB. The pathway dynamics in response to optic and electric stimulation and the emitted magnetic fields were estimated using the cable equation. For simulating the optic stimulation, the light distribution in brain tissue was numerically estimated and used to model the optogenetic neural excitation based on a four state channelrhodopsin-2 (ChR2) model. The corresponding heating was also estimated, using the bio-heat equation and was found to be low (<2°C) even at excessively strong optic signals. A peak magnetic field strength of ∼0.5 and ∼0.1 nT was calculated from the auditory brainstem pathway after electrical and optical stimulation, respectively. By increasing the stimulating light intensity four-fold (far exceeding commonly used intensities) the peak magnetic signal strength only increased to 0.2 nT. Thus, while optogenetic stimulation would be favorable to avoid artefacts in the recordings, electric stimulation achieves higher peak fields. The present simulation study predicts that high-resolution magnetic imaging of the action potentials traveling along the auditory brainstem pathway will only be possible for next generation NV sensors. However, the existing sensors already have sufficient sensitivity to support the magnetic sensing of cumulated neural signals sampled from larger parts of the pathway, which might be a promising intermediate step toward further maturing this novel technology. |
format | Online Article Text |
id | pubmed-8155532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-81555322021-05-28 In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study Karadas, Mürsel Olsson, Christoffer Winther Hansen, Nikolaj Perrier, Jean-François Webb, James Luke Huck, Alexander Andersen, Ulrik Lund Thielscher, Axel Front Neurosci Neuroscience Magnetometry based on nitrogen-vacancy (NV) centers in diamond is a novel technique capable of measuring magnetic fields with high sensitivity and high spatial resolution. With the further advancements of these sensors, they may open up novel approaches for the 2D imaging of neural signals in vitro. In the present study, we investigate the feasibility of NV-based imaging by numerically simulating the magnetic signal from the auditory pathway of a rodent brainstem slice (ventral cochlear nucleus, VCN, to the medial trapezoid body, MNTB) as stimulated by both electric and optic stimulation. The resulting signal from these two stimulation methods are evaluated and compared. A realistic pathway model was created based on published data of the neural morphologies and channel dynamics of the globular bushy cells in the VCN and their axonal projections to the principal cells in the MNTB. The pathway dynamics in response to optic and electric stimulation and the emitted magnetic fields were estimated using the cable equation. For simulating the optic stimulation, the light distribution in brain tissue was numerically estimated and used to model the optogenetic neural excitation based on a four state channelrhodopsin-2 (ChR2) model. The corresponding heating was also estimated, using the bio-heat equation and was found to be low (<2°C) even at excessively strong optic signals. A peak magnetic field strength of ∼0.5 and ∼0.1 nT was calculated from the auditory brainstem pathway after electrical and optical stimulation, respectively. By increasing the stimulating light intensity four-fold (far exceeding commonly used intensities) the peak magnetic signal strength only increased to 0.2 nT. Thus, while optogenetic stimulation would be favorable to avoid artefacts in the recordings, electric stimulation achieves higher peak fields. The present simulation study predicts that high-resolution magnetic imaging of the action potentials traveling along the auditory brainstem pathway will only be possible for next generation NV sensors. However, the existing sensors already have sufficient sensitivity to support the magnetic sensing of cumulated neural signals sampled from larger parts of the pathway, which might be a promising intermediate step toward further maturing this novel technology. Frontiers Media S.A. 2021-05-13 /pmc/articles/PMC8155532/ /pubmed/34054404 http://dx.doi.org/10.3389/fnins.2021.643614 Text en Copyright © 2021 Karadas, Olsson, Winther Hansen, Perrier, Webb, Huck, Andersen and Thielscher. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Karadas, Mürsel Olsson, Christoffer Winther Hansen, Nikolaj Perrier, Jean-François Webb, James Luke Huck, Alexander Andersen, Ulrik Lund Thielscher, Axel In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study |
title | In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study |
title_full | In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study |
title_fullStr | In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study |
title_full_unstemmed | In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study |
title_short | In-vitro Recordings of Neural Magnetic Activity From the Auditory Brainstem Using Color Centers in Diamond: A Simulation Study |
title_sort | in-vitro recordings of neural magnetic activity from the auditory brainstem using color centers in diamond: a simulation study |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155532/ https://www.ncbi.nlm.nih.gov/pubmed/34054404 http://dx.doi.org/10.3389/fnins.2021.643614 |
work_keys_str_mv | AT karadasmursel invitrorecordingsofneuralmagneticactivityfromtheauditorybrainstemusingcolorcentersindiamondasimulationstudy AT olssonchristoffer invitrorecordingsofneuralmagneticactivityfromtheauditorybrainstemusingcolorcentersindiamondasimulationstudy AT wintherhansennikolaj invitrorecordingsofneuralmagneticactivityfromtheauditorybrainstemusingcolorcentersindiamondasimulationstudy AT perrierjeanfrancois invitrorecordingsofneuralmagneticactivityfromtheauditorybrainstemusingcolorcentersindiamondasimulationstudy AT webbjamesluke invitrorecordingsofneuralmagneticactivityfromtheauditorybrainstemusingcolorcentersindiamondasimulationstudy AT huckalexander invitrorecordingsofneuralmagneticactivityfromtheauditorybrainstemusingcolorcentersindiamondasimulationstudy AT andersenulriklund invitrorecordingsofneuralmagneticactivityfromtheauditorybrainstemusingcolorcentersindiamondasimulationstudy AT thielscheraxel invitrorecordingsofneuralmagneticactivityfromtheauditorybrainstemusingcolorcentersindiamondasimulationstudy |