Cargando…
MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress
[Image: see text] Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies offers researchers the ability to deeply profile smaller numbers of cells that are more likely to be encountered in clinical settings. Herein a recently developed microscale proteomic method, mi...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155554/ https://www.ncbi.nlm.nih.gov/pubmed/33491460 http://dx.doi.org/10.1021/acs.jproteome.0c00629 |
_version_ | 1783699230999707648 |
---|---|
author | Weke, Kenneth Singh, Ashita Uwugiaren, Naomi Alfaro, Javier A. Wang, Tongjie Hupp, Ted R. O’Neill, J. Robert Vojtesek, Borek Goodlett, David R. Williams, Sarah M. Zhou, Mowei Kelly, Ryan T. Zhu, Ying Dapic, Irena |
author_facet | Weke, Kenneth Singh, Ashita Uwugiaren, Naomi Alfaro, Javier A. Wang, Tongjie Hupp, Ted R. O’Neill, J. Robert Vojtesek, Borek Goodlett, David R. Williams, Sarah M. Zhou, Mowei Kelly, Ryan T. Zhu, Ying Dapic, Irena |
author_sort | Weke, Kenneth |
collection | PubMed |
description | [Image: see text] Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies offers researchers the ability to deeply profile smaller numbers of cells that are more likely to be encountered in clinical settings. Herein a recently developed microscale proteomic method, microdroplet processing in one pot for trace samples (microPOTS), was employed to identify proteomic changes in ∼200 Barrett’s esophageal cells following physiologic and radiation stress exposure. From this small population of cells, microPOTS confidently identified >1500 protein groups, and achieved a high reproducibility with a Pearson’s correlation coefficient value of R > 0.9 and over 50% protein overlap from replicates. A Barrett’s cell line model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g., ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3, S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared to the untreated set. These results demonstrate the ability of microPOTS to routinely identify and quantify differentially expressed proteins from limited numbers of cells. |
format | Online Article Text |
id | pubmed-8155554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-81555542021-05-28 MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress Weke, Kenneth Singh, Ashita Uwugiaren, Naomi Alfaro, Javier A. Wang, Tongjie Hupp, Ted R. O’Neill, J. Robert Vojtesek, Borek Goodlett, David R. Williams, Sarah M. Zhou, Mowei Kelly, Ryan T. Zhu, Ying Dapic, Irena J Proteome Res [Image: see text] Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies offers researchers the ability to deeply profile smaller numbers of cells that are more likely to be encountered in clinical settings. Herein a recently developed microscale proteomic method, microdroplet processing in one pot for trace samples (microPOTS), was employed to identify proteomic changes in ∼200 Barrett’s esophageal cells following physiologic and radiation stress exposure. From this small population of cells, microPOTS confidently identified >1500 protein groups, and achieved a high reproducibility with a Pearson’s correlation coefficient value of R > 0.9 and over 50% protein overlap from replicates. A Barrett’s cell line model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g., ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3, S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared to the untreated set. These results demonstrate the ability of microPOTS to routinely identify and quantify differentially expressed proteins from limited numbers of cells. American Chemical Society 2021-01-25 2021-05-07 /pmc/articles/PMC8155554/ /pubmed/33491460 http://dx.doi.org/10.1021/acs.jproteome.0c00629 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Weke, Kenneth Singh, Ashita Uwugiaren, Naomi Alfaro, Javier A. Wang, Tongjie Hupp, Ted R. O’Neill, J. Robert Vojtesek, Borek Goodlett, David R. Williams, Sarah M. Zhou, Mowei Kelly, Ryan T. Zhu, Ying Dapic, Irena MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress |
title | MicroPOTS Analysis
of Barrett’s Esophageal
Cell Line Models Identifies Proteomic Changes after Physiologic and
Radiation Stress |
title_full | MicroPOTS Analysis
of Barrett’s Esophageal
Cell Line Models Identifies Proteomic Changes after Physiologic and
Radiation Stress |
title_fullStr | MicroPOTS Analysis
of Barrett’s Esophageal
Cell Line Models Identifies Proteomic Changes after Physiologic and
Radiation Stress |
title_full_unstemmed | MicroPOTS Analysis
of Barrett’s Esophageal
Cell Line Models Identifies Proteomic Changes after Physiologic and
Radiation Stress |
title_short | MicroPOTS Analysis
of Barrett’s Esophageal
Cell Line Models Identifies Proteomic Changes after Physiologic and
Radiation Stress |
title_sort | micropots analysis
of barrett’s esophageal
cell line models identifies proteomic changes after physiologic and
radiation stress |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155554/ https://www.ncbi.nlm.nih.gov/pubmed/33491460 http://dx.doi.org/10.1021/acs.jproteome.0c00629 |
work_keys_str_mv | AT wekekenneth micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT singhashita micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT uwugiarennaomi micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT alfarojaviera micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT wangtongjie micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT hupptedr micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT oneilljrobert micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT vojtesekborek micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT goodlettdavidr micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT williamssarahm micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT zhoumowei micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT kellyryant micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT zhuying micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress AT dapicirena micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress |