Cargando…

MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress

[Image: see text] Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies offers researchers the ability to deeply profile smaller numbers of cells that are more likely to be encountered in clinical settings. Herein a recently developed microscale proteomic method, mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Weke, Kenneth, Singh, Ashita, Uwugiaren, Naomi, Alfaro, Javier A., Wang, Tongjie, Hupp, Ted R., O’Neill, J. Robert, Vojtesek, Borek, Goodlett, David R., Williams, Sarah M., Zhou, Mowei, Kelly, Ryan T., Zhu, Ying, Dapic, Irena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155554/
https://www.ncbi.nlm.nih.gov/pubmed/33491460
http://dx.doi.org/10.1021/acs.jproteome.0c00629
_version_ 1783699230999707648
author Weke, Kenneth
Singh, Ashita
Uwugiaren, Naomi
Alfaro, Javier A.
Wang, Tongjie
Hupp, Ted R.
O’Neill, J. Robert
Vojtesek, Borek
Goodlett, David R.
Williams, Sarah M.
Zhou, Mowei
Kelly, Ryan T.
Zhu, Ying
Dapic, Irena
author_facet Weke, Kenneth
Singh, Ashita
Uwugiaren, Naomi
Alfaro, Javier A.
Wang, Tongjie
Hupp, Ted R.
O’Neill, J. Robert
Vojtesek, Borek
Goodlett, David R.
Williams, Sarah M.
Zhou, Mowei
Kelly, Ryan T.
Zhu, Ying
Dapic, Irena
author_sort Weke, Kenneth
collection PubMed
description [Image: see text] Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies offers researchers the ability to deeply profile smaller numbers of cells that are more likely to be encountered in clinical settings. Herein a recently developed microscale proteomic method, microdroplet processing in one pot for trace samples (microPOTS), was employed to identify proteomic changes in ∼200 Barrett’s esophageal cells following physiologic and radiation stress exposure. From this small population of cells, microPOTS confidently identified >1500 protein groups, and achieved a high reproducibility with a Pearson’s correlation coefficient value of R > 0.9 and over 50% protein overlap from replicates. A Barrett’s cell line model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g., ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3, S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared to the untreated set. These results demonstrate the ability of microPOTS to routinely identify and quantify differentially expressed proteins from limited numbers of cells.
format Online
Article
Text
id pubmed-8155554
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-81555542021-05-28 MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress Weke, Kenneth Singh, Ashita Uwugiaren, Naomi Alfaro, Javier A. Wang, Tongjie Hupp, Ted R. O’Neill, J. Robert Vojtesek, Borek Goodlett, David R. Williams, Sarah M. Zhou, Mowei Kelly, Ryan T. Zhu, Ying Dapic, Irena J Proteome Res [Image: see text] Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies offers researchers the ability to deeply profile smaller numbers of cells that are more likely to be encountered in clinical settings. Herein a recently developed microscale proteomic method, microdroplet processing in one pot for trace samples (microPOTS), was employed to identify proteomic changes in ∼200 Barrett’s esophageal cells following physiologic and radiation stress exposure. From this small population of cells, microPOTS confidently identified >1500 protein groups, and achieved a high reproducibility with a Pearson’s correlation coefficient value of R > 0.9 and over 50% protein overlap from replicates. A Barrett’s cell line model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g., ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3, S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared to the untreated set. These results demonstrate the ability of microPOTS to routinely identify and quantify differentially expressed proteins from limited numbers of cells. American Chemical Society 2021-01-25 2021-05-07 /pmc/articles/PMC8155554/ /pubmed/33491460 http://dx.doi.org/10.1021/acs.jproteome.0c00629 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Weke, Kenneth
Singh, Ashita
Uwugiaren, Naomi
Alfaro, Javier A.
Wang, Tongjie
Hupp, Ted R.
O’Neill, J. Robert
Vojtesek, Borek
Goodlett, David R.
Williams, Sarah M.
Zhou, Mowei
Kelly, Ryan T.
Zhu, Ying
Dapic, Irena
MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress
title MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress
title_full MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress
title_fullStr MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress
title_full_unstemmed MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress
title_short MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress
title_sort micropots analysis of barrett’s esophageal cell line models identifies proteomic changes after physiologic and radiation stress
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155554/
https://www.ncbi.nlm.nih.gov/pubmed/33491460
http://dx.doi.org/10.1021/acs.jproteome.0c00629
work_keys_str_mv AT wekekenneth micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT singhashita micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT uwugiarennaomi micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT alfarojaviera micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT wangtongjie micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT hupptedr micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT oneilljrobert micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT vojtesekborek micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT goodlettdavidr micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT williamssarahm micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT zhoumowei micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT kellyryant micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT zhuying micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress
AT dapicirena micropotsanalysisofbarrettsesophagealcelllinemodelsidentifiesproteomicchangesafterphysiologicandradiationstress