Cargando…
The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
To tackle the challenges in genomic data analysis caused by their tens of thousands of dimensions while having a small number of examples and unbalanced examples between classes, the technique of unsupervised feature selection based on standard deviation and cosine similarity is proposed in this pap...
Autores principales: | Xie, Juanying, Wang, Mingzhao, Xu, Shengquan, Huang, Zhao, Grant, Philip W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155687/ https://www.ncbi.nlm.nih.gov/pubmed/34054930 http://dx.doi.org/10.3389/fgene.2021.684100 |
Ejemplares similares
-
A Cosine Similarity-Based Method to Infer Variability of Chromatin Accessibility at the Single-Cell Level
por: Cai, Stanley, et al.
Publicado: (2018) -
Hierarchical Cosine Similarity Entropy for Feature Extraction of Ship-Radiated Noise
por: Chen, Zhe, et al.
Publicado: (2018) -
IBGJO: Improved Binary Golden Jackal Optimization with Chaotic Tent Map and Cosine Similarity for Feature Selection
por: Zhang, Kunpeng, et al.
Publicado: (2023) -
Comparative Analysis of Unsupervised Protein Similarity Prediction Based on Graph Embedding
por: Zhang, Yuanyuan, et al.
Publicado: (2021) -
M6A-BiNP: predicting N(6)-methyladenosine sites based on bidirectional position-specific propensities of polynucleotides and pointwise joint mutual information
por: Wang, Mingzhao, et al.
Publicado: (2021)