Cargando…
Current trends and challenges in the downstream purification of bispecific antibodies
Bispecific antibodies (bsAbs) represent a highly promising class of biotherapeutic modality. The downstream processing of this class of antibodies is therefore of crucial importance in ensuring that these products can be obtained with high purity and yield. Due to the various fundamental structural...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155696/ https://www.ncbi.nlm.nih.gov/pubmed/34056544 http://dx.doi.org/10.1093/abt/tbab007 |
Sumario: | Bispecific antibodies (bsAbs) represent a highly promising class of biotherapeutic modality. The downstream processing of this class of antibodies is therefore of crucial importance in ensuring that these products can be obtained with high purity and yield. Due to the various fundamental structural similarities between bsAbs and monoclonal antibodies (mAbs), many of the current bsAb downstream purification methodologies are based on the established purification processes of mAbs, where affinity, charge, size, hydrophobicity and mixed-mode-based purification are frequently employed. Nevertheless, the downstream processing of bsAbs presents a unique set of challenges due to the presence of bsAb-specific byproducts, such as mispaired products, undesired fragments and higher levels of aggregates, that are otherwise absent or present in lower levels in mAb cell culture supernatants, thus often requiring the design of additional purification strategies in order to obtain products of high purity. Here, we outline the current major purification methods of bsAbs, highlighting the corresponding solutions that have been proposed to circumvent the unique challenges presented by this class of antibodies, including differential affinity chromatography, sequential affinity chromatography and the use of salt additives and pH gradients or multistep elutions in various modes of purification. Finally, a perspective towards future process development is offered. |
---|