Cargando…

Differentiating Small-Cell Lung Cancer From Non-Small-Cell Lung Cancer Brain Metastases Based on MRI Using Efficientnet and Transfer Learning Approach

Differentiation between small-cell lung cancer (SCLC) from non-small-cell lung cancer (NSCLC) brain metastases is crucial due to the different clinical behaviors of the two tumor types. We propose the use of a deep learning and transfer learning approach based on conventional magnetic resonance imag...

Descripción completa

Detalles Bibliográficos
Autores principales: Grossman, Rachel, Haim, Oz, Abramov, Shani, Shofty, Ben, Artzi, Moran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155765/
https://www.ncbi.nlm.nih.gov/pubmed/34030542
http://dx.doi.org/10.1177/15330338211004919
Descripción
Sumario:Differentiation between small-cell lung cancer (SCLC) from non-small-cell lung cancer (NSCLC) brain metastases is crucial due to the different clinical behaviors of the two tumor types. We propose the use of a deep learning and transfer learning approach based on conventional magnetic resonance imaging (MRI) for non-invasive classification of SCLC vs. NSCLC brain metastases. Sixty-nine patients with brain metastasis of lung cancer origin were included. Of them, 44 patients had NSCLC and 25 patients had SCLC. Classification was performed with EfficientNet architecture on crop images of lesion areas and based on post-contrast T1-weighted, T2-weighted and FLAIR imaging input data. Evaluation of the model was carried out in a 5-fold cross-validation manner, and based on accuracy, precision, recall, F1 score and area under the receiver operating characteristic curve. The best classification results were obtained with multiparametric MRI input data (T1WI+c+FLAIR+T2WI), with a mean overall accuracy of 0.90 ± 0.04, and F1 score of 0.92 ± 0.05 for NSCLC and 0.87 ± 0.08 for SCLC for the validation data and an accuracy of 0.87 ± 0.05, with an F1 score of 0.88 ± 0.05 for NSCLC and 0.85 ± 0.05 for SCLC for the test dataset. The proposed method provides an automatic noninvasive method for the classification of brain metastasis with high sensitivity and specificity for differentiation between NSCLC vs. SCLC brain metastases. It may be used as a diagnostic tool for improving decision-making in the treatment of patients with these metastases. Further studies on larger patient samples are required to validate the current results.